
Blockchain in IoT with

HyperLedger Fabric Framework

A report on project completed in partial fulfilment of the requirement of the degree

of Master of Science

Alexander Vieth

Elin Dangol Maharjan

Sepideh Askarimarnani

Viet-Hoa Nguyen

Project Supervisors:

Prof. Dr. Martin Kappes

Johannes Bouche

Faculty of Computer Science and Engineering

Frankfurt University of Applied Science

Nibelungenplatz-1, 60318 Frankfurt am Main

Date: 31.03.2020

Abstract

The blockchain emerges as an advanced technology that has the potential broken out

of its initial use in the advancement of cryptocurrency and bitcoin to non-financial

purposes with its permissioned model, which can transform a lot of businesses. With

blockchain still under constant development, it is important to start experimenting

with different implementations before actually adopting it in the enterprise. The ob-

jective of this project is to develop a prototype using Hyperledger Fabric for quality

management in the context of semiconductor manufacturing. This prototype acts as

a proof of concept to evaluate the use of blockchain in realistic scenarios. The results

show that the blockchain can be used as a decentralized database that provides addi-

tional layers of security and provides the auditing process with more transparency.

Keywords: blockchain; Hyperledger Fabric; sensor data integrity; quality manage-

ment.

i

Acknowledgements

Working in this project was very interesting. During the developing process, we have

learned a lot about blockchain technology, especially about Hyperledger Fabric. We

would like to thank Prof.Dr Kappes for the chance to be involved in this project. We

especially want to thank Johannes Bouche and Lukas Atkinson who guided us for the

completion of the project and explained critical aspect of topics related to the project.

ii

Contents

Abstract i

Acknowledgements ii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Project Description 3

2.1 Project Overview . 3

2.2 Purpose . 4

2.3 Scope . 5

2.4 Scenario . 5

2.4.1 Problem analysis . 9

2.4.2 Sensor data trust . 11

2.4.3 Unusable benefits of Blockchain and Smartcontracts 12

3 Blockchain 14

3.1 Introduction . 14

3.2 Blockchain Architecture . 14

3.3 Working Principle . 15

3.4 Types . 16

3.4.1 Public /Permissionless . 16

3.4.2 Private . 17

3.4.3 Permissioned . 17

3.5 Hyperledger Fabric . 18

3.5.1 Overview . 18

3.5.2 Fabric Components . 19

iii

3.5.3 Smart Contract . 21

3.5.4 Architecture . 21

3.5.5 Transaction Flow . 21

4 Design 24

4.1 Use Case Diagram . 24

4.2 Architecture . 26

4.3 Components . 26

4.3.1 Hyperledger Fabric Network . 26

4.3.2 API . 29

4.3.3 Sensor . 29

4.3.4 UI . 30

4.4 Data Encryption . 31

4.5 Client Authentication . 32

4.6 Application Flow . 32

5 User Interface 33

6 Project Timeline 36

6.1 Gantt Chart . 36

6.2 Individual Contribution . 38

7 Project Issues 39

7.1 Issues Faced . 39

7.1.1 Network setup problem . 39

7.1.2 Security problem . 41

7.1.3 Conclusions . 42

7.2 Solutions . 42

7.2.1 Solutions to network configuration issues 42

7.2.2 Solutions to security issues . 43

7.3 Remaining Problems . 45

iv

7.4 Suggestion for further improvements 47

8 Conclusion 49

Bibliography 52

v

List of Figures

2.1 Project setup overview . 6

2.2 Sensor simulator setup . 8

2.3 Man in the middle attack scenario . 11

2.4 Basic transactions with bitcoin . 13

3.1 Blockchain as a continuous sequence of blocks [1] 14

3.2 A common blockchain process flow [2] 16

3.3 Execute-order-validate architecture of Fabric (rwset means a readset

and writeset as explained [3] . 22

3.4 Fabric high level transaction flow [3] 23

4.1 Sensor data push to the Blockchain during the manufacturing process . 24

4.2 Use Case Diagram . 25

4.3 System Architecture Diagram . 26

4.4 Smart Contract State Diagram . 27

5.1 User Registration . 33

5.2 Login Screen . 33

5.3 Device Registration . 33

5.4 List of Registered Devices . 34

5.5 List of Transaction . 34

5.6 Transaction Details . 35

5.7 Transaction Details Expanded View . 35

6.1 Project timeline . 37

vi

List of Tables

3.1 Blockchain Types [4] . 16

4.1 REST API endpoints . 29

6.1 List of individual contribution. 38

vii

Introduction

Blockchain is the newest contribution to the technology after the internet of things,

social media and cloud computing. Blockchain is a distributed ledger or data structure

for all transactions which are taken place between different parties in a network. The

main goal of this technology is to implement a decentralized platform that doesn’t

require the engagement of an authorized third party for validating transactions. Every

member in network hold the same copy of the ledger. Since it is founded on a system

of distributed consensus, thus guarantees integrity and security [5].

On the other hand, Internet of Things (IoT) is a fast-growing paradigm trans-

forming our lives in terms of working, traveling, entertaining ourselves or interacting

each other, and our life is changing in many ways. IoT requires building a network

of interconnected daily objects collecting data from the environment and automating

specific activities. IoT devices are known to have remarkable vulnerabilities to cyber-

attacks. In fact, the shortage of intrinsic security mechanisms renders IoT prone to

privacy concerns and security risks [6].

A significant majority of IoT platforms are centralized model based, so a central

failure point is a risk that needs to be tackled. Information confidentiality and authen-

tication is a sever threat in IoT, therefore data security is a core requirement. Data

integrity is another concern in IoT. One of the main implementations of IoT relates

to decision support systems in which timely decision are taken based on the collected

data from several sensors. Hence, system should be protected by preventing the in-

jection of wrong data which impact on decision making. Another challenge in IoT is

establishing trust between entities without an authorized third-party to mitigate the

issue of non-repudiation [6].

Furthermore, today there are growing number of use cases for data provenance

systems in IoT. In summary, such systems offer information on different phases of

data generation and modifications, who began and when and how they were created.

It is crucial to store this information in a transparent and replicable manner in order

1

to be trusted. Vaccine Supply Chains is an example of data provenance system in

which temperature and locations of the vaccines are tracked and controlled. Therefore,

any errors during the cold chain is identified and in this way it helps to develop and

preserve trust in immunization application, by avoiding falsified vaccines from reaching

the supply chain [7].

Blockchain (BC) can help address all these issues. Blockchain technology enables

making decentralized IoT systems providing secured and trusted exchange of data

along storing data in a shared ledger between all entities [8]. Many of IoT’s architec-

tural deficiencies can be alleviated by key characteristic of the blockchain technology

including immutability, transparency, auditability, data encryption and operational

resilience. Blockchain offers authenticity, non-repudiation, and integrity and facili-

tates authorization and automation for transactions by smart contracts [6].

Currently many researches are conducting in integration of Blockchain in IoT and

there are many challenges to address specific demands in this area and developing

a prototype using a blockchain technology in IoT, was a great chance for us to un-

derstand these topics to some extent and develop our practical knowledge regarding

security aspect of the processing data in a blockchain network.

The rest of this report is organized as follows. In section 2, full description of the

project and its scope is presented. Section 3 covers the main characteristics of the

blockchain and Hyperledger Fabric framework. The following section 4 is the core of

design and implementation of the project. User interfaces are presented in section 5.

In section 6, project timeline and team organization are provided. We discuss project

issues in section 7 and, finally, Section 8 concludes our work.

Sepideh 2

Project Description

Since the scientific field of the blockchain technology and its extensions, like smart

contracts, is both vast and relatively unexplored, our team had to maneuver in a

predefined project harness, which was provided to us by the project organizers. In

the following chapters, we will describe the predefined scenario, the general goal of

the project, as well as go into detail about the specific scenario that we’ve created,

which fits into the given project harness. As a general note about the project - the

following requirements/project harness was mandated to us by the project organizers.

This obviously limited the amount of directions that we could have taken the project

in. We will later see, that this resulted in some interesting inherent problems, when

it comes to applying the blockchain technology to scenarios which are similar to our

project.

2.1 Project Overview

The previously mentioned project harness consists of a list of requirements, which

our project had to fulfill Among those are the technology to be used and a general

scenario outline. The requirements can be summarized to these points:

• have a scenario with 2 or more business partners

• use sensor data (simulated or data from an actual sensor)

• use the hyperledger fabric framework

• realize some security benefit by using smart contracts

• have a platform to interact with the blockchain network

Given this harness, only a limited amount of meaningful and distinguishable scenarios

are possible. Meaningful and distinguishable scenarios in this case are scenarios that

can still be distinguished even if we change the names and/or types of the sensor data

3

or amount of sensors, or peers. For example, a project which implements a smart

contract that performs a boundary check on temperature data of a product in a

manufacturing process is essentially the same as a project which implements a smart

contract that performs a boundary check on radar data of multiple radar stations.

While the amount of peers and the types of data are different, both projects boil

down to a boundary check and lack any meaningful differences in terms of security

benefits.

2.2 Purpose

With that context in mind, the goal of the project was to realize a solution to a

scenario which fulfills the above mentioned requirements and increases the security

when handling the sensor data, or increases the confidence in the data’s integrity.

Essentially any angle that improves the scenario in terms of it-security, while utilizing

the required technologies. The secondary purpose is gaining experience in handling

new topics of computer science in a scientific way, in a group. In later chapters we

will go into further detail regarding the project and time management, as well as

planning. Furthermore, the results of this project might help the IT-Security research

lab where there are currently working on a blockchain related research project, in

assessing possible directions/angles from which to tackle additional aspects of using

blockchain for sensor/IoT data.

Alexandar Vieth 4

2.3 Scope

While the requirements for this project technically allow for the development of a

fully fletched business application, the timeframe for the project and the general lack

of experience of our team in the field of blockchain, meant, that we had to restrict the

scope of the project to a proof-of-concept level application. This means we’ve defined

certain assumptions about the project setup and the implementation of our ideas. For

example, some of the assumptions are:

• key exchange for sensor data encryption happened over a secure channel

• the sensors and ledger run on different machines

• the web interface for the ledger and sensors follows security best practices

These points would be critical for a fully developed application but are not relevant

regarding the topic of this project, which is handling sensor data with blockchain and

smart contracts. In the next few chapters, we will go into detail on the specific scenario

and setup that we’ve used. There we will mention and explain all the assumptions we

took specifically.

2.4 Scenario

Let’s assume that there exists a company BP1 which manufactures silicon wafer plates

and delivers them to a different manufacturing plant, which is owned by another

company BP2. Wafers are thin silicone plates on which microchips are produced [9]. A

single wafer can contain hundreds of microchips, which are very sensitive to humidity

and temperature. Let’s further assume that the wafer plates are packaged in sealed

containers, which contain a temperature and relative humidity sensor. The sensors

are connected to a raspberry pi which has access to the internet. We assume that

the raspberry pi has the minimum amount of attack surface, which means there are

no additional services/programs running on the pi that could be used to compromise

Alexandar Vieth 5

the device. We also assume that the pi has been configured with the best practices

in mind, in the context of IT-security. This can include - but is not limited to: using

a stable release of a Linux operating system distribution, with up-to-date security

updates, proper SSH setup [10] and HTTPS capabilities. Both business partners BP1

and BP2 have an invested interest in knowing the state of the wafer plates. The state

in our case is defined as a combination of temperature and relative humidity at a

given point in time. The raspberry pi reads the sensor values every few seconds and

packages them into a data bundle. The bundle contains a list of sensor values with a

timestamp, as well as a bundle ID and the name of the sensor. If the bundle reaches

a certain amount of sensor data entries, the raspberry pi encrypts the data and sends

it to a webserver, which in turn is connected to the blockchain network.

Figure 2.1: Project setup overview

There the data is decrypted and written into the blockchain. If the decryption fails,

the data is ignored. We have defined a required format for the data, as well as the need

for a valid username, which has to be attached to the packaged sensor data. We assume

that the communication from the raspberry pi to the webserver is encrypted using

HTTPS. We further assume that the webserver was setup with the best practices for

Alexandar Vieth 6

secure web services [11]. This should include features like input validation, escaping

inputs, sql injection prevention and CSRF protection. While some features like CSRF

protection are not necessary when we have one-directional communication from the

raspberry pi to the webserver, it becomes relevant when the same webserver handles

the web interface which allows an administrator to register new sensors, and business

partners to sign of on sensor data. While this is the scenario that we ended up with,

it is useful to also take a look at some of our previous candidates and see how we

arrived at our solution. We have considered implementing the following features:

• performing anomaly detection on sensor data

• marking blockchain entries with a trustworthiness score

• using a real raspberry pi and sensors

Anomaly detection would allow us to detect outliers, or abnormal behavior of the

sensor. This could be a sign of a broken device, or the attempt to forge fake sensor

data, perhaps to cover up manufacturing or transport mistakes. Detecting these

situations might increase the confidence in the data for both business partners. For

the sake of clarity, we will discuss the caveats, that come with these proposed features,

in the next chapter. If we where to perform a qualitative check on the sensor data,

we could then determine a level of suspiciousness regarding the data. The idea was to

append that level as a numeric value to the blockchain entry. The business partners

could then quickly take notice of a suspicious situation. Another idea was to do create

a realistic representation of the scenario, using real sensor data and real raspberry pi’s.

This degree of realism would allow us to check for certain, how applicable the solution

really would be. While not technically a feature, it would increase the complexity

of the project, which was one of the characteristics that we have used, to assess

if we should implement a feature or not. We’ve instead gone for the simulation

route, in which we use a real world set of temperature and humidity data from the

great UCI Machine Learning Repository[12]. The website provides a vast pool of

datasets in a broad span of fields. We’ve decided to use the occupancy detection

Alexandar Vieth 7

dataset [13], which contains data to detect if a room is occupied by a human or

not. Luckily it also provides real sensor values for the fluctuating relative humidity

and temperature (among other values). Since we assume that these values would

not drastically differ, compared to when we would have used our own raspberry pi

with real sensors, we’ve have decided to write a small simulator program in python.

This also had the advantage, that each of our team members could access/read the

sensor data for testing at any point, without having access to special equipment -

which in this case would be the raspberry pi with the 2 sensors. We have written the

simulator, to read the dataset in predefined intervals and parse out the temperature

and humidity values. We then assigned our own timestamp, along with additional

information, which we will cover in later chapters. The simulator then packages the

data to a JSON, which is then sent via HTTP to our webserver for further handling.

Figure 2.2: Sensor simulator setup

In a real world setting, there would be a real sensor and we would add another

layer of security by using HTTPS. We have simplified the scenario to compensate for

lack of time and the relevancy of these features in the context of the project goal,

which is to use the hyperledger fabric blockchain and smartcontract technology.

Alexandar Vieth 8

2.4.1 Problem analysis

To understand why we eventually decided against these features, we need to look back

at the goal of the project, which was to use hyperledger fabrics blockchain framework

and it’s support for smart contracts to improve the integrity and/or security of sensor

data coming from IoT devices.

Looking at the above defined scenario, it is clear that no matter the output of the

sensor, that we want to store the data in the blockchain. Under (almost) no circum-

stance, do we want to reject sensor data and therefore prevent it from being stored in

the blockchain. The simple reason being, that both business partners want to have an

uncompromised and unfiltered view of the current state of the wafer transportation

container. If a sensor is damaged and starts recording unrealistic values, the business

partners still have an invested interest in knowing that information.

Likewise, in a scenario where we have potentially forged, or otherwise anomalous data

- even if we can categorize the data with a decent amount of precision, we still want

both business partners to have that information, as opposed to rejecting the data

point(s). Let’s assume that we take the second approach, which is to still perform

an anomaly detection process on the sensor data, but instead of rejecting it, we mark

the data either with a binary value or levels of suspiciousness and then create a new

blockchain entry. Even in a perfect scenario, where the categorization process is al-

ways accurate and both business partners could immediately see how trustworthy the

data is, did we not actually used the features of the blockchain technology or the smart

contract in any way. The same functionality can be realized without blockchain and

smart contracts

by simply running the same anomaly detection on the sensor data somewhere else

as the smart contract. There exists a bit of nuance in that scenario though, which

we will show a little later. Having the before mentioned perfect anomaly detection

being inside the smart contract, would guarantee that the detection process is always

triggered for every transaction, which would be a desirable scenario.

Alexandar Vieth 9

An underlying problem arises though, if we take a more realistic view of anomaly

detection systems. The previous thought experiment requires the assumption, that

the sensor data has some characteristic that can be categorized as anomalous, and

can be detected by running the data - or a set of data - through some code. With

simple boundary checks, it is clear that this is the case. Define a valid boundary and

then validate the given data against that. Even deviating from established patterns

will work. Let’s assume a scenario, in which the sensor is exposed to daylight. The

recorded temperature would change periodically over the span of serval days, and by

the nature of relative humidity, the relative humidity would also change in the same

periodical fashion. Should the recorded data deviate too much from that pattern, we

can categorize it as an anomaly. In regards to sensor data forgery, which is arguably

the more sensitive topic, the answer is not so obvious. When planning the project

and our approach to it, we’ve found that there exists a difficult problem of detecting

forged sensor data.

A great real world example for a similar problem can be found in the 2010 Stuxnet

worm [14]. The goal of the worm was to infect as many computers in the country

of Iran, and more specifically the town if Natanz as well as its neighboring areas.

The target was to infiltrate the uranium enrichment facility, located in Natanz via a

portable storage device - such as an USB stick.

Once inside the facility, the worm destroyed the enrichment centrifuges by manipu-

lating its rotary speeds, while simultaneously displaying acceptable sensor data in the

control room. Because the Iranians trusted the source of the sensor data, there was no

way to detect the forgery. The sensor values of course seemed real. This leads us to

our scenario, where a similar attack could be performed. An attacker could torch the

wafer storage container, while forging acceptable temperature and humidity values.

If these sensor values are all the business partners have, to perceive the current state

of the storage container, they will suffer the same results as the Iranians. The com-

parison to Stuxnet is not technically correct though, since Stuxnet had compromised

the centrifuges control elements.

Alexandar Vieth 10

The correct analogy to our project would be an attack, in which the raspberry pi

was compromised. In that case it would be game over anyways. The attack vector

still exists though, if we don’t check the authenticity of the sensors. This need for

verification is one of the main points we want to propose in this project.

Our system would otherwise also be vulnerable to a man-in-the-middle attack[15],

in which the attacker intercepts the real sensors data, changes the values and forwards

his own message to our server.

Figure 2.3: Man in the middle attack scenario

An approach to add security to our scenario is to use encryption, to secure the sen-

sor values, as well as verify the sensors authenticity in a similar fashion as Nakamoto

described for his Bitcoin crypto currency [16]. More on that later. Regarding the

realistic scenario setup, in which we would setup and use a real raspberry pi and real

sensors - we’ve found that this extra degree of realism doesn’t actually add anything

meaningful to the project.

We’ve found that we can use a preexisting dataset for humidity and temperature val-

ues to create a simulator for our sensor, which was more flexible and easier to use in

our distributed working environment.

2.4.2 Sensor data trust

Given that context, we’ve deduced that by the nature of the given scenario, every

solution that bases its accepting/rejecting decision on analysis of the sensor data, will

be inherently flawed. We came to that conclusion, because in every case the business

Alexandar Vieth 11

partners want to see and perhaps process the data coming from the sensor, even if we

could for certain categorize ı̈nvalidd̈ata, regardless on how you would define ı̈nvalid̈.

Anomaly detection system will produce false positives and false negatives. Given a

margin of error for such a system, the benefits can evaporate quickly. That being

the case - it results in us never rejecting data, which is one of the aspects that smart

contract technology provides us with. There could be an argument made, that besides

the inherit benefit of having a decentralized immutable storage of information, the

features of the hyperledger fabric framework do not offer meaningful security additions

to a scenario as was described in the project harness. Hyperledger does provide

user/peer management, which helped us in setting up the permissioned blockchain

network. Based on this information, we’ve decided that using the smart contract to

perform authorization and data format checks, is a meaningful and beneficial usage

of hyperledger frameworks smart contract technology. This means that we can, to

a reasonable degree (depending on the encryption used), say, that no entry in the

blockchain was read by a unauthorized third party.

2.4.3 Unusable benefits of Blockchain and Smartcontracts

While analyzing our approach to the subject, we’ve found that core beneficial concepts

of other blockchain solutions are not applicable for logging sensor/IoT data. Lets take

Bitcoin [16] as an example. Whoever Nakamoto might be, he utilized the validation

aspect that comes with a decentralized immutable record of transactions, that are

signed and verified using public/private keys. Since Bitcoin is a crypto currency,

it deals with financial transactions between 2 peers in a network with an arbitrary

amount of peers. Where there is money, there is fraud and theft. The blockchain

and its distributed ledger, offer a clear benefit by preventing fake transactions. Let’s

assume Jay and Jungho are peers. Jay wants to transfer 10 EUR to the wallet of

Jungho, so he creates the transaction and signs it with his private key. Jungho can

then verify the validity of the transaction using Jays public key.

Should a forged transaction over 1000 EUR be send to Jungho, the decryption/ver-

Alexandar Vieth 12

Figure 2.4: Basic transactions with bitcoin

ification would fail, unless Jay’s private key was compromised. Therefor every trans-

action can be locally verified and only authorized transactions can make it into the

blockchain. The chain itself can be used to reconstruct and verify transactions. Mak-

ing the contents of the blockchain meaningful to future transactions and therefor have

an impact on new blocks. With this real world example in mind, lets again take a

look at our scenario. The values inside the blockchain don’t influence how we want

to handle the next data point, since we are only storing sensor data. A temperature

value has no intrinsic meaning to the next temperature value, as a transaction over x

EUR from A to B would, to a transaction over y EUR from B to C. Regarding the

verification of transactions, using encryption and decryption - this concept is benefi-

cial, even in our scenario. As long as we assure the safety of the private keys, we can

claim with confidence, that only valid transactions and therefor sensor data from a

trusted source makes it into our blockchain. As we will in later chapters see, we’ve

isolated this aspect as one of the strongest arguments for using blockchain for storing

sensor data.

Alexandar Vieth 13

Blockchain

3.1 Introduction

Blockchain is one of the latest innovations in our world today and many develop-

ments and works have just started on this technology. There are various blockchain-

oriented applications, including financial services, reputation systems and the Internet

of Things (IoT). Blockchain is a decentralized ledger or data structure for all transac-

tions which are taken place between different parties in a network. It can be considered

as chain of blocks where each block points to the block previous of it. After entering

the data of transactions or events into the Blockchain, it is impracticable to modify

the information that are accessed by members of the network. Transactions are veri-

fied in the Blockchain only after it is approved by the majority of the users involved

in this process [1] [17].

3.2 Blockchain Architecture

As described before, sequence of blocks form a blockchain, and each block contains

records of transactions and transaction counter in its block body and also a block

header in which the calculated hash of the parent block and other details are stored.

The first block is called the genesis block [1]. This is demonstrated in Figure 3.1.

Figure 3.1: Blockchain as a continuous sequence of blocks [1]

14

Key Characteristics of Blockchain

There are several key characteristics of the blockchain summarized as bellow.

1. Decentralization : In contrast to the centralized transaction systems in which

each transaction should be validated by a trusted agency, in blockchain the

centralized authority is not needed anymore [1].

2. Persistency : Deleting or rollback transactions is almost impossible as they’re

used in the blockchain [1].

3. Anonymity : Every participant owns an individual address to communicate

within the blockchain, which doesn’t disclose the user’s true identity [1].

4. Auditability : It is simple to verify and trace transactions in a blockchain [1].

5. Transparency : The collected data in blockchain is transparent to all autho-

rized members which results in preventing from modification and tampering

[2].

3.3 Working Principle

The first step in using blockchain is to construct a peer-to-peer network between all

interested nodes. Each node is assigned a Public/Private key pair for encryption and

decryption of the exchanged messages respectively. Once a transaction is generated

by a node, it get endorsed by private key of the node and is transmitted to other peers

and consequently it is decrypted in receiver nodes using sender public key which is

known to the network. In this way the authentication of sender is assured as well as

the integrity of the messages, since if data is transferred incorrectly, decryption at the

recipient peer is not possible anymore. In this way the messages are validated by each

peer and transmitted, then miner nodes order and pack them into a timestamped

block [4].

Sepideh 15

Next, these block are disseminated back to the network and nodes check the valid-

ity of transactions in the block and also by applying the corresponding hash function,

verify that new block points out to its preceding block in the chain. The block will be

ignored if theses conditions are not met. If two conditions are successfully satisfied,

the nodes must append the block to the blockchain and update transactions [4]. The

diagram in Figure 3.2 presents the workflow of the blockchain.

Figure 3.2: A common blockchain process flow [2]

3.4 Types

Based on the managed data, the accessibility of these data and the actions that user

able to perform, there are various types of blockchains. Therefore, public and private

blockchains, and permissioned and permissionless blockchains can be separated. In

table below four type of Blockchains are categorized [4] [18].

Table 3.1: Blockchain Types [4]

It is however noted that public and permissionless terms are used interchangeably,

and thus private and permissioned.

3.4.1 Public /Permissionless

Public blockchains are open for all. Normally, participants are encouraged to join.

Everyone is able to enter without the approval of third-parties. Anyone can participate

Sepideh 16

anonymously in posting transactions and may be involved in the mining and consensus

phase of adding a new block of records to blockchain. Bitcoin is the most famous public

blockchain [4] [18] [19].

3.4.2 Private

In a private blockchain access to network is restricted. Invitations are necessary to

participate in a private blockchain. Private blockchains generally exist in a permis-

sioned network to further constrain network membership [19].

3.4.3 Permissioned

Most private blockchains often control which users can execute transactions, smart

contracts or serve as network miners. In permissioned blockchains participants are

known and identified. These blockchains are typically designed for their particular

business needs by organizations can provide interfaces through company’s current

applications [4].

Generally such blockchains offer a means of securing interactions between a group

of individuals that have a shared goal but do not completely trust each other, such

as businesses exchanging money, products or information [3]. Hyperledger-Fabric or

Ripple are examples of private permissioned blockchains. It is also notable that not

all private blockchains are necessarily permissioned. For example, a company may

implement a private blockchain based on Ethereum which is not permissioned [4].

Sepideh 17

3.5 Hyperledger Fabric

3.5.1 Overview

Hyperledger Fabric, is an open-source blockchain platform optimized for use in en-

terprise environments [20]. It is among Hyperledger’s projects based on the Linux

platform. Example of use cases could be in fields of food safety, contract manage-

ment, industrial logistics and digital currency settlement [3].

Fabric presents a new blockchain architecture that strives to be more resilient,

flexible, salable and confidential. It has been designed as a modular architecture and

implemented as a permissioned blockchain facilitating privacy and confidentiality of

transactions and the smart contracts [20][3]. It is the first distributed operating sys-

tem for permissioned blockchains in which all participants are identified in the whole

network. Furthermore, distributed application developed in standard programming

languages (e.g., Go, Java, Node.js) can be executed on many nodes in the Fabric

network [3].

Fabric’s architecture demonstrates a modern execution-order-validation model

providing the execution of untrusted code in an untrustworthy distributed environ-

ment. It stores the history of executed transactions in the ledger database. Transac-

tion flow is divided to three phases: 1) execution and endorsement by several peers 2)

ordering 3) validation which will be discussed with more details in section Transaction

Flow 3.5.5 [3] There are two core components in any application developed in Fabric

framework:

1. Smart Contract , also called chaincode is an executable program code con-

taining the logic of the application and runs in the execution phase [3].

2. Endorsement policy , in validation phase, functions as a static library for

validation of the transaction in Fabric framework. Permission for defining the

endorsement policies only is granted to Administrator. In a typical policy, a

set of peers who should sign a transaction are defined in a logical expression

Sepideh 18

like “(A ∧ B) ∨ C”. In simple word, it specifies the endorsers which should

digitally sign a transaction before being accepted by other members into their

ledger instance [3].

Hyperledger Fabric even provides the possibility to establish channels to con-

struct a specific transaction ledger for a community of participants [20].

3.5.2 Fabric Components

Fabric Network

A Set of nodes construct a network in the fabric bloackchain. Each node hold an

identity granted by membership service provider (MSP) . There are three types

of nodes in a Fabric network:

1. Clients through an application submit transaction proposal in execution phase,

support organizing the execution process and transmit transaction to get ordered

[3]

2. Peers are the core building block of a network hosting smart contracts and

ledger. Client application should connect to peers in order to access the ledger

[20]. Execution and validation of the proposed transactions are carried out by

peers. A copy of the blockchain ledger is kept by all peers. However, only a

number of peers called endorsers are allowed to participate in execution of the

transaction proposal [3].

3. Orderers are the nodes which participate in the process of ordering the trans-

actions, and a group of them form Ordering Service Nodes (OSN). These nodes

do not take part in the validation and execution of the transactions [3].

Ledger

In Hyperledger Fabric framework a ledger is a core concept. Information or so-called

Facts related to the business objects are stored in the ledger. Two related parts in

Sepideh 19

ledger are word state and blockchain . Word state is a database which stores the

current values of the objects in form of a key-value pairs. Blockchain has an append-

only structure which holds the log of all transactions resulted in the current state of

the object. Transactions are stored in a block and are added to the blockchain. This

history is immutable and append-only, but the current state can be modified [20].

Fabric CA

Every active node in the blockchain is assigned a verifiable digital identity in the form

of a X.509 digital certificate. These certificates are cryptographic credentials employed

for specifying the access permission to resources and information in a blockachin [3].

Fabric framework has a built–in Certificate Authority known as Fabric CA

responsible for issuing and managing digital certificates through generating a public

and private key. It functions in two modes: offline and online. In offline mode,

credentials are generated for all nodes. Peer and orderer nodes are registered only in

this mode. In online mode, there is the possibility to create cryptographic credentials

for client nodes [3].

Membership Service Provider (MSP)

It stores the identity of all active members (clients, peers and orders) in the network.

In other word, it has a list of permissioned network participants. As Fabric is a

permissioned private blockchain, therefore, all nodes communicate with each other

through authenticated messages by means of digital certificate. Membership service

is a process in which the identities are authenticated and authorized by other part

of the network. It is implemented based on Public Key Infrastructure (PKI)

mechanism [3]. MSP assigns a role to each identity and defines privilege for each

role. Every user should be assigned a role, for example admin, client, peer, orderer.

Considering the scope, MSP are categorized into two domains: local and channel .

In local mode, MSP is implemented on an active node and in channel mode it is

configured for a channel. A local MSP folder holds certificates of the root CA and

Sepideh 20

admin as well as private and public keys of the node [20].

Ordering Service

The main function of the ordering service is to organize batches of submitted trans-

actions in a well-defined order and bundle them into blocks. Those blocks will be a

part blockchain [20]. More details is explained in section 3.5.5

3.5.3 Smart Contract

In real world, when companies wants to interact with each other, there should be a

set of contracts including the rules, common terms and conditions, data and defined

process details. In this way, all communications between organizations are controlled

through this business model. In blockchain technology, these contracts are transformed

into executable programs, identified as smart contract in the industry [20].

In other world, all transaction logic that regulates the life cycle of objects in a

blockchain, are specified in the smart contract. In Fabric framework, a group of smart

contracts are bundled into chaincodes deployed to the network. Smart contract has

access to world state and blockchain in ledger to update states and query the history

of transactions respectively. It runs on a peer node in the network and invoked by a

set of input parameters named as transaction proposal [20].

3.5.4 Architecture

As mentioned before, Fabric architecture follows the ’execute-order-validate’ paradigm.

This is shown in Figure 3.3. The whole transaction flow is discussed in the following

section .

3.5.5 Transaction Flow

In this section, different steps of the transaction flow in Fabric is summarized and.

These steps are shown in Figure 3.4

Sepideh 21

Figure 3.3: Execute-order-validate architecture of Fabric (rwset means a readset and
writeset as explained [3]

Execution Phase

In this phase, client applications communicate with endorsing peers. First, based

on the endorsement policy, a transaction proposal sent by application to required

endorsers. Next, using this proposed transaction, every endorsing member separately

executes the chaincode and a generates transnational proposal response . The

ledger is not updated in this step. Finally, endorsed proposal responses are collected

and sent back to the client application. When a proposal response is endorsed, the

digital signature of the endorser is added then using its private key, the whole payload

is encrypted and signed. So, Authenticity and Non-repudiation is achieved [20].

Ordering Phase

In the second phase, endorsed transaction responses are submitted to the Ordering

Service Nodes where the blocks of sequenced transactions are generated and prepared

for distribution among peers. The essential point is that the ordering service posi-

tions transactions in a specific order, which is used by the peers during transactions

validation and commitments [20].

Validation and Commit Phase

Phase three starts with distribution a copy of new blocks by orderer to all peer nodes

connected to it in the same channel. This block is processed by every peer separately

but in the same manner as other channel peers do. So, resulted in consistency of

Sepideh 22

the ledger. Each transaction in the new block is examined by peers for checking

the necessary endorsements based on the predefined policy in the chain code. This

validation process ensures that all related organizations have achieved an identical

outcome. After each single transaction has been validated successfully, it is committed

to the peer ledger. Invalid transactions are kept for auditing purpose and marked with

an indicator and do not update ledger [20].

Certain events are published during these processes including transaction events,

block and chaincode events. So,client application can be subscribed to these event in

order to get notified [20].

Consensus

The whole cycle of transaction workflow is termed consensus since all peers have

come to an agreement on the sequence and content of transactions in a cycle facilitated

by the orderers [20].

Figure 3.4: Fabric high level transaction flow [3]

Sepideh 23

Design

The design was basically done by generalizing a solution for a manufacturing process

and supply chain scenario. Further, different parts of the solution were customized in

relation to the project topic.

The following diagram shows in detail the process of data collection during the

entire manufacturing process.

Figure 4.1: Sensor data push to the Blockchain during the manufacturing process

When a new manufacturing process cycle is started, a new transaction is raised

with a unique batch number representing that particular manufacturing batch. The

data are continuously collected throughout the manufacturing process. At some in-

tervals, the collected data are packed into a data block and are pushed to the server

under the initially created batch number. With this, we create a chain of data of

particular batch under a single chain identified by their batch number. At the end

when the manufacturing process ends, the auditors audits the collected data and pro-

vides their decision which is updated into the chain and thus marks the end of the

insert/update operations for that batch. Further, the users are able to fetch the data

from the blockchain. However, any editing of the settled batch data is not possible

anymore.

4.1 Use Case Diagram

The use case diagram defines all the types of actors that is used to interact with the

system. Also it shows what each type of those actors can do within the system.

24

Let us look into details about the actors and their respective roles in the system.

Admin: This represents the main admin user.

Sensor: This represents the sensor devices.

User: This represents a general user.

Auditor: This represents the auditors from the audit department of the auditing

organization.

Figure 4.2: Use Case Diagram

An organizational structure comprising of two organizations were used for this

project. An admin is assigned for these organizations. The first organization, org1 is

the manufacturing organization containing normal users and the sensor devices. The

users and sensor devices are further assigned into two departments, department1 and

department2, within the org1. The second organization, org2 comprises of auditor

users in their separate department of auditors.

The admin user is allowed to register new users for the two organizations. The

sensor users can raise a new transaction or update an existing transaction in the

blockchain. The two types of users, user and auditor requires to login before making

any further request to the system. Both types of users can view transactions made in

the blockchain, however only the auditor users are allowed to settle the transaction

after the manufacturing process is completed.

Elin Dangol 25

4.2 Architecture

The system was designed with a modular approach. The system is basically divided

into four modules, i.e. hyperledger fabric network, API server, UI and sensors, as seen

in the figure below:

Figure 4.3: System Architecture Diagram

The core hyperledger fabric network was created in a private network infrastruc-

ture. However, it can also be implemented over a public network infrastructure, The

second module is the API server. It consists of the RESTful API service for the

end-users of the system and sensor devices, It also includes hyperledger fabric client

component. The hyperledger fabric client component provides an interface to connect

to the gateway and interact with the hyperledger fabric network. The web user inter-

face and the sensor devices can interact with the hyperledger fabric network through

the API endpoints.

4.3 Components

4.3.1 Hyperledger Fabric Network

For this project, Hyperledger Fabric[21] was used as the Blockchain framework. The

two organizations were represented as a two different network hosted over docker

Elin Dangol 26

containers. A number of docker containers were used to represent different peers,

and endorsers for the two organizations. The docker containers were then collectively

hosted in a cloud infrastructure in Digital Ocean Cloud Service.

To setup the network infrastructure, four peer nodes were created along with one

ordering service node. The peer nodes were assigned, two each, to the two orga-

nizations, org1 and org2. Also a separate node was setup with the administrative

privileges so that any deployment of smart contract or creation of new nodes in the

network can be done through this particular node. Couchdb was used as world state

database. The world state stores the most recent detail for every transaction stored

in the blockchain. Lastly two Certificate Authority(CA) servers were also created in

separate nodes for the two organizations.

To start the network, a channel was created in the network using the hyperledger

fabric framework and all the peer and orderer nodes were assigned to the channel.

The keys generated from the CA servers were used to validate the nodes while joining

the channel.

Smart Contract Implementation

The smart contract for our project was written in java programming language. The

core logic regarding data insertions and update into the blockchain was implemented

in the smart contracts. The following diagram shows the flow of a transaction into

different states in the blockchain. .

Figure 4.4: Smart Contract State Diagram

Elin Dangol 27

As seen in the figure above, a transaction can be in three different states, i.e.

ISSUED, CHECKED IN and SETTLED. When a new transaction is raised by

the sensor at the start of a manufacturing process cycle, it is set to ISSUED state. For

every updates received from the sensor device, the transaction is set to CHECKED IN

state. Finally, the transactions are set to SETTLED state at the end after the audit

process is completed. The state of the transaction can to changed to SETTLED state

only by a auditor user.

A transaction might be completed in a single step as well if all the data is sent in

a single batch of data. Thus, it has been considered so that the auditor user is able

to set the state from ISSUED to SETTLED directly as well.

Elin Dangol 28

4.3.2 API

An Application Programming Interface(API), written in nodejs, was used for inter-

facing between the Hyperledger Fabric Network and the client modules. This HTTP-

based RESTful API enables the communication between the web client, sensor data

simulator and the blockchain network.

The following table defines the API endpoints and there respective descriptions:

Sn API Path Description Type Content-Type

1 /api/user/register Register new user POST application/json

2 /api/sensor/

register

Register new sensor device and

returns the newly generated pub-

lic key for the registered device

upon successful registration.

POST application/json

3 /api/txn/issue Issue a new transaction POST application/json

4 /api/txn/update Update and existing transaction POST application/json

5 /api/txn/settle Settlement of existing transaction POST application/json

6 /api/txn/list Gets the list of all the transac-

tions

GET application/json

7 /api/txn/

{batchNumber}

Gets details of a transaction GET application/json

8 /api/txn/

{batchNumber}/

history

Gets detailed history of a trans-

action

GET application/json

Table 4.1: REST API endpoints

4.3.3 Sensor

A temperature and humidity sensor is used to record the data of the semiconductors

during the manufacturing process. The sensor continuously records the temperature

and humidity during the whole manufacturing process. The collected data is then, at

Elin Dangol 29

regular intervals or whenever available, pushed to the blockchain.

Initially, a sensor was used with a Raspberry Pi to record the data and study the

data formats and the sensor behavior. Thereafter, with the idea of how the collected

data was like, a simulator was used to to simulate the whole manufacturing process.

Simulator

A simulator, written in python, was used to read the values from dataset of temper-

ature and humidity values. The data in the dataset are then prepared into a block

of data with random number of records. An initialization vector is created dynam-

ically and the whole block is then encrypted using the key of the simulated sensor

device. The encrypted data is then pushed to the blockchain through the RESTful

api service(4.3.2).

Each cycle of manufacturing process is represented through a unique batch number.

The prepared blocks of data for the given manufacturing process cycle are then pushed

to the blockchain network under its respective batch numbers.

4.3.4 UI

The User Interface(UI) for the project was designed to interact and view the infor-

mation stored in the blockchain. It provides a way for the auditor to view the stored

data for their auditing process and then update the status of the transactions with

the audit results. Following components were used for the UI.

Flask

Flask[22] is a light-weight web framework in python for web development. The UI

was developed using flask since it is good at keeping the core functionalities simple

but provides a good approach to extend any required functionalities when required.

Elin Dangol 30

HTML

A web based UI was used for viewing data and transaction settlement by the auditor

user. Thus, Hyper-text Markup Language 5(HTML5) was used to create different

components in the UI.

Bootstrap

To provide some visual styling to the UI, bootstrap, a styling library was used to

provide a proper suitable design for the UI. Bootstrap, under its hood, uses Cascading

Style Sheet 3 (CSS3) and javascript.

4.4 Data Encryption

Contemplating data security during the data transfer through the networks, data en-

cryption algorithms were used to ensure that transfer of data in a secure way. A

widely popular and sufficiently reliable Advanced Encryption Standard(AES) encrp-

tion algorithm was used to encrpt the data.

AES algorithm is a symmetric block cipher algorithm which utilizes a defined

length initialization vector and a key to do the encryption. The encrpted data will

be then send to the receiver along with the initialization vector to the receiver. The

receiver then uses the initialization vector and its copy of the key to decrypt the

message.

We used ”aes-256-cbc” AES algorithm for our case. Our implementation of the

algorithm uses 16-bits initialization vector and 32-bits encryption key of length 128-

bits. The data from the sensor is encrypted using the key provided during the sensor

device registration and the dynamically generated initialization vector. The data is

send over the RESTful service to the node api server(4.3.2) where the data is decrypted

and further passed to the core hyperledger network(4.3.1).

Elin Dangol 31

4.5 Client Authentication

Basic authentication method was used to authenticate the clients making requests to

the hyperledger fabric network(4.3.1) through the RESTful api(4.3.2). An authen-

tication header is sent with every request to the server. The header contains the

authentication type, ”Basic” in our case, along with encoded user credentials.

For simplicity, basic authentication method was used. However a more sophisti-

cated and secure authentication methods, applicable for the scenario, can be used as

well. An example of such is Oauth2 with JSON Web Token(JWT).

4.6 Application Flow

A registered sensor device starts collecting the temperature and humidity data once

the manufacturing process starts. It continuously collects the data and prepares the

data into blocks of data. The data is then encrypted using the secret key of the sensor

device and then pushed to the API server.

The received data is decrypted at the API server. The data is then sent to the

hyperledger fabric network through its client interface. The smart contract deployed at

the hyperfabric network then validated the received data and issues the transaction to

be stored into the blockchain. If the request is invalid or comes through unauthorized

source of identity, the smart contract rejects the request.

At any given time, any authenticated users can access the data stored in the

blockchain. The web UI is used for this purpose. When the manufacturing process is

completed, the auditor users can then view the data and settle the transactions with

the audit results. The transactions, after the settlement cannot be altered and can

only be viewed as a reference data.

Elin Dangol 32

User Interface

User Registration

Figure 5.1: User Registration

The user registration form is used to get the required details for registration

of a new user. Also a drop down menu is used to provide a list of available

departments under the organization to which the new user can be registered to.

User Login

Figure 5.2: Login Screen

Any user who needs to access the system need to login first.

Device Registration

Figure 5.3: Device Registration

Registration of the sensor devices can be done through this form. Unlike user

registration, a secret key generated from the CA server of the respective organi-

33

zation is returned upon successful registration of the device. the key is required

for device identification and encryption process during the data transmission.

Device List

Figure 5.4: List of Registered Devices

This interface shows the list of devices registered in the system along with their

Membership Service Providers(MSP).

Transaction List

Figure 5.5: List of Transaction

This interface shows the list of all the transactions related to the particular

organization which the logged in user is registered to. In the list, status of

each transaction is displayed along with different state of the transactions in the

blockchain.

Elin Dangol 34

Transaction Details

Figure 5.6: Transaction Details

If an audit user is logged in, additional options to settle an transaction is avail-

able for those batch numbers which have completed the manufacturing process

and pending for audit. The audit user can update the transaction status to

accept or reject during settlement process.

Figure 5.7: Transaction Details Expanded View

Each transaction in the transaction list can be further expanded to view into

details, the whole dataset of the manufacturing process for that particular batch

number.

Elin Dangol 35

Project Timeline

The project was structured into four main parts as follows research and studying the

literatures. analyzing the requirements and possible use cases, designing, development

and testing. Like any other proof of concept projected most of the work are invested

in getting understanding of the new topics and the new technology. By the end of this

phrase, the team members had been able to read through the official documents of

Hyperledger Fabrics and understand the key concepts. In the next step, based on the

overall project definition provided by the professor, the team has defined the concrete

use cases for the blockchain app.

6.1 Gantt Chart

A Gantt chart displaying the project timeline as shown in figure 6.1. Gantt charts

are used to identify when the projects milestones should be completed so the project

is delivered on time. A breakdown of the task, the order in which they should be

competed and their time allocation is shown below.

36

2
0
1
9

2
0
2
0

O
c
t

N
o
v

D
e
c

J
a
n

F
e
b

K
ic

ko
ff

P
la

n
n
in

g
S
tu

d
y

of
th

e
li
te

ra
tu

re

D
ev

el
op

m
en

t
en

v
ir

on
m

en
t

se
tu

p

S
er

ve
r

st
eu

p

M
il

es
to

n
e

1

D
e
si

g
n

R
eq

u
ir

em
en

t
an

al
y
si

s

U
se

ca
se

s

A
p
p
li
ca

ti
on

’s
w

or
k
fl
ow

Im
p
le

m
e
n
ta

ti
o
n

S
m

ar
t

C
on

tr
ac

t

M
il

es
to

n
e

2:
D

em
o

of
sm

ar
t

co
n

tr
ac

t

R
E

S
T

A
P

I

S
im

u
la

to
r

A
u
d
it

or
’s

d
as

h
b

oa
rd

M
il

es
to

n
e

3:
D

em
o

of
In

di
vi

du
al

F
ea

tu
re

s

T
e
st

in
g

F
in

al
P

re
se

n
ta

ti
on

F
ig

u
re

6.
1:

P
ro

je
ct

ti
m

el
in

e

Viet-Hoa Nguyen 37

6.2 Individual Contribution

The individual contributions in our project are described in the table 6.1. Besides the

individual contribution, the following tasks are distributed fairly between the team

members:

• preparation and planning of milestones presentation

• preparation planning and writing of report.

Table 6.1: List of individual contribution.

Name Tasks

Alexander Vieth • Identifying and defining the application’s use cases

• Design, implementation and testing of the simulator

Elin Dangol Maharjan • Setup the core network

• Design and implementation of the Hyperledger

Fabric network and chaincode

• Design, implementation and testing of the REST

API for client application

Sepideh Askarimarnani • Functional testing of the application

• Research for methods of data encryption

Viet-Hoa Nguyen • Design,implementation and testing of the dashboard

for auditors

• Research for cloud hosting solution and setup of the

virtual machine.

Viet-Hoa Nguyen 38

Project Issues

In the previous chapter the implemented blockchain application was described. In

this chapter the issues encountered in process of developing the application will be

identified and discussed. It also provides the solutions made by the team in order to

overcome these problems. Suggestions for future developments are also presented in

order to improve the application and the development process.

7.1 Issues Faced

7.1.1 Network setup problem

Setting up the framework and the network

As the start the first problem faced by the team was able to setup the network. Due

to the newness of the technology, it is worth noting that the lack of technical docu-

ments and community support acted as a big barrier in the first phrase. The official

documentations on readthedoc does provide a relatively good explanation about the

key concepts and the overall architecture. Nonetheless, there is still opportunities for

enhancement, since the documentations does not explain in depth how the basic con-

cepts they are exactly implemented in the code, and immediate example to showcase

the key concepts. For example, with change in the configuration how the behaviors

of the system will be affected.

The second issue with setting up the network is to get Hyperledger Fabric net-

work running on personal development environment in our case personal computers,

this emerged from the fact that Hyperledger Fabric works better with Linux-based

environments and not very compatible with Windows OS, which is used by most of

the team members. Our team has been struggled for a long time to get the sample

network up-and-running for all of the team members. After a lot of attempts to install

Hyperledger Fabric on Windows and comparing to the same process on linux-based

39

machine, we concluded that Windows are obviously a bad choice and we should move

to another solution on linux-based machines in order to save time.

Because Hyperledger Fabric is constantly being enhanced with new features in each

of the updates, it should be kept in mind that the previous versions might not work

with the new version. Therefore, the lesson to be taken with is that it is important

to keep only one version over the team in order to avoid unwanted incompatibility

problems, from which our team has been suffered.

Understanding the configuration

The problem of configuration is particularly challenging in the context of the first

network example because of the fact that this example is docker based, which provide

a fairly simple starting point keeping the developer from having to deal with the

architecture complexity. This example does provide a project with the network setup

and a smart contracted deployed called fast car example. The simple application is

structured with each node (i.e. peers, ordering service, channels) implemented as a

docker container. The configuration of the nodes is defined in a config yaml file. Thus,

the adjustments to be made on the network such as updating the network components

involved heavily with docker commands, which are systematically defined in the read

the doc.

However, this kind of low-level approach has its own drawback, since it the ad-

justments made per container can have unexpected impacts on operation of the whole

network, which can be traced and fixed. In other words, a Docker-contained program

can be fast to get up and running, but it can also be non-deterministic if the pro-

grammer makes some mistakes. Thus, the attempts to make experimental changes on

simple first network example are heavily discouraged thorough the development.

In addition, the lack of ergonomic developer experience on building the network

from core does not help the developer to build intuition and gain trust with the core

network components. This also results into the lack of experiments with the Fabric

core network of the fabcar example.

Viet-Hoa Nguyen 40

Programming language constraints

In Hyperledger Fabric, chaincode is the piece of code that runs on top of the net-

work peers to implement the business logic of how applications interact with the

ledger. When a transaction is proposed, it triggers chaincode that decides what state

change should be applied to the ledger. Thus, chaincode is one of the most impor-

tant components in decentralized applications on Hyperledger Fabric. The writing of

chaincode is supported in variety of popular programming languages such as Golang,

Java, JavaScript via Nodejs and Python. Nonetheless, with respect to functionalities,

developer productivity (assuming minimal experience in each language) and commu-

nity support, writing chaincode in JavaScript (Nodejs) can be easier, faster and are

backed with a large source of mature documentations. This observation also applies

to the development of our simple REST API, which allows a client web application

to interact with the chaincode.

7.1.2 Security problem

In the existing client-server applications, the identity models rely heavily on a cen-

tralized data repository of identity. As a result, due to the decentralized nature of

blockchain application, several unique challenges are introduced with blockchain ap-

plication,

User authentication

Since Hyperledger Fabric is a permissioned blockchain and uses Public Key Infrastruc-

ture, every user has to be granted a credential, user credentials such as usernames and

password are replaced by asymmetric cryptography, which consists of a key pair of

private key and public key. In our use case, we have three different roles for users, this

introduce the challenge in being able to combine this security feature of Hyperledger

Fabric with a role-based authentication system.

Viet-Hoa Nguyen 41

7.1.3 Conclusions

Apparently, developing and application with Hyperledger Fabric requires a great

amount of in-depth understanding in a broad range of topics such as network security,

system networking as well as excellent technical skills and web application develop-

ment. Even experienced developers still need time to have a clear understanding of

the blockchain platforms.

7.2 Solutions

7.2.1 Solutions to network configuration issues

As mentioned earlier, at the beginning there is a lot of problems regarding to the

installation of Hyperledger Fabric on different OS environments. In order to overcome

the hardware constraints, we have done research to find an economical and efficient

options to enable efficient collaboration between team members.

One of the most promising approach is to rent server from a cloud service provider

and deploy our Fabric blockchain onto that server. This approach will alleviate our

team from having to maintaining our own server, therefore, we can focus more on

developing our application’s core functionalities. In addition to the outright increasing

in productivity, cloud solution is faster than having each team member having to

install and running his/her own network, rather than we have a single networking run

and maintained by only one team members. With this approach, all team members

will be able to work with the latest version of the network and can contribute freely

to the projects.

By doing the research, the team has come across a lot of options for cloud services

providers and different models of cloud services such as Microsoft Azure, Google Cloud

and Amazon Web Services. It is also worth to mention that many cloud computing

providers, such as Amazon Web Services (AWS Managed Blockchain) and Microsoft

Azure (Azure Blockchain Services) are now offering Blockchain as a Service (BaaS),

Viet-Hoa Nguyen 42

these solutions might be interesting the enterprise application context, since they offer

a complex back-end setup for the blockchain app, functions and smart contracts with

a certain fee.

However, these off-the-shell solution does have some infrastructure constraints that

does not allow our team to freely implemented our own network. Having eliminated

the use of BaaS, the team has decided to use a simple virtual machine from Digital

Ocean. Digital Ocean Droplets was our choice of cloud computing due to its competi-

tive price (cheapest among the common cloud service providers) and the ease to start

with.

Thorough the development this solution has be proven to be a good fit. The virtual

machine allows the team to work seamlessly together with zero downtime. It also

provides us the possibility to easily scaling out the infrastructure when being needed

such as using more server and deploy them with the network.

7.2.2 Solutions to security issues

As mentioned earlier in the use case in the section, there is a need to have a role-

based authentication system. We came up with a solution in which the user identity

is managed in two separated databases. The first database is credential store inside

Fabric network, after the user was created, a wallet for the user is created to hold

the user identity generated (public and private key). The second database is the user

account database of Flash dashboard application. Each user account is given a set

of unique username and self-given password (first given by the admin) and a copy

version of the private key created by the MSP. The process of user registration can

be describe as follows:

1. The new user is assigned with an initial username and password by the admin.

The user uses this username and password to login into the dashboard application.

2. A copy of the private and public key of the user is saved in the Flask’s application

user identity database.

3. Each transaction proposal (approve/reject data) in form of API calls must be

Viet-Hoa Nguyen 43

signed with the auditor’s private key.

4. The REST API servers receives the requests and checks the user’s private key

against its the version in the Fabric’s credential store to determines if the user is

granted with the role to perform a particular transaction proposal before invoking the

smart contract.

Viet-Hoa Nguyen 44

7.3 Remaining Problems

In this section, we will focus on the remaining security challenges of deploying a

blockchain with authorized participant. Even though our implementation of the user

authentications has fulfilled the operational requirements of the Hyperledger Fabric

network, with potentially more complex use cases, there are some drawbacks in our

solution such as data fragmentation and identity theft.

Data Fragmentation

The first unsolved problem is concerned with data fragmentation. Because the user

identity is fragmented among two databases, in order to keep the two databases (web

application and Fabric network) synchronized in various of use cases such as password

backup, password reset if the users forget their login password, user blacklist or user

deactivate. Moreover, the poor off-chain password management policies can result in

the key pair being the soft spot for hackers. The private and the public key of the

user has to be stored off-chain in the client application, they could be exposed to ,

since the key pairs can be stolen and be used to perform malicious transaction on the

blockchain. Therefore, there is a need for a more secured way to store the key and

key exchange process.

Automate auditing process in the smart contract

In our current implementation of the smart contract, transaction details are saved

into the blockchain. In order to perform audit activity such as accept and reject the

sensor data entries, the auditors have to look into the data by logging in and manually

check each entry for the audit and then finally also update the status at the end of the

audit process. However, this process can be automated and thus eliminate the role

of an auditor completely. In the future, the automation can be implemented in the

following manners. First, the auditor organization define their own logic for auditing

contract. Afterwards, this set of logics can be written into a separate smart contract

Viet-Hoa Nguyen 45

and deployed into the network as a subcontract under the main smart contract. The

main smart contract will invoke that smart contract which is independently deployed

by the auditor organization. This approach will avoid a lot of manual work, since

auditing logic is implemented in the smart contract and once the transaction is done,

the audit report status is automatically updated to the blockchain.

Enables https on the servers

One of the further steps which can be taken in term of security is enabling https on

the server we are using to deploy our Fabric network and the dashboard application.

It means that the REST API has to be configured with HTTPS and TLS, in order to

keep all data transfer between the REST server and all of the REST clients encrypted.

Thus, we can lower the security risks by preventing attacks such as man-in-the-middle

attack, or malicious request injection. This will also prevent attackers to injecting

scripts, images, or contents onto the dashboard application.

Viet-Hoa Nguyen 46

7.4 Suggestion for further improvements

Hyperledger Fabric is undeniably one of the most popular projects under Hyperledger.

However, it is worth noting that Hyperledger is not a single framework but an umbrella

project where there are several existing projects and projects which are still actively

under development. From the technical standpoint, it would be beneficial to have a

look into other Hyperledger frameworks in the search of solution for our remaining

problems, since these frameworks are guaranteed to be compatible with Hyperledger

Fabric. In addition, the strategy in solution finding is to prioritize fully developed

solutions that can cover multiple problems at the same time. For that reason, it can

be boiled down to other frameworks in the Hyperledger ecosystem. In this section,

two other Hyperledger projects namely Hyperledger Indy and Hyperledger Composer,

which are gaining a lot of business interests will be presented along with their benefits

in order to explain how these technologies will enhance the existing application.

Rapid prototyping with Hyperledger Composer

Hyperledger Fabric is still a hard-to-grasp framework, as mentioned earlier in the

section. A good framework to start with developing application on Fabric is to use

Hyperledger Composer, an open-source application development framework built on

Hyperledger Fabric blockchain infrastructure and runtime. With Hyperledger Com-

poser, a developer with limited knowledge about blockchain can easily build and

configure core components of the blockchain which includes the network’s digital as-

set, transaction logic, participants and access controls.

It also supports use cases and real-time testing, which can even be performed through

web-based Composer playground with the need for local installations. Compared to

Fabric, Hyperledger Fabric is easier to be understood and gives the possibility of

creating a minimal viable product in a small amount of time. In addition, Hyper-

ledger Composer enables developers to quickly create REST API to expose logic to

web application. Another advantage of Hyperledger Composer that Yeoman(a generic

Viet-Hoa Nguyen 47

scaffolding tool) is also integrated, it can create a skeleton Angular App used as a

starting point to the applications.

A major benefit of Hyperledger Composer is that it also supports data integration call

Loopback to connect our existing Fabric system on Hyperledger Composer so that we

can continue to work and improve the old system without having to build the core

network from the beginning. We firmly believe that with using Hyperledger Com-

poser complementarily to Fabric can support developing, testing new use cases and

operating the network far more efficiently by not having to deal with the complicated

coding process when using Composer’s web interface Playground .

Self-sovereign identity with Hyperledger Indy

As discussed earlier, the better solution to secure the private key in association with

a username/id on the blockchain or similar storage for authorization and authenti-

cation should be considered. With the emerging of blockchain as a new computing

paradigm for decentralized database system, self-sovereign identity (SSI) has gained a

lot of attention. SSI is based on the premise that identifier, such as usernames should

be replaced with IDs that are self-owned and independent. This approach requires

a decentralized identity ecosystem without administrative authorities. Hyperledger

Indy is a foundation technology that enables SSI and supports independent identities

on distributed ledgers and offers tools, libraries, and reusable components for provid-

ing digital identities based on blockchains or other distributed ledgers. It is based on

the premise that blockchain can be used as an authentication provider. Using their

key-pair, the users register their identity on the blockchain. The benefit of Hyper-

ledger Indy is that it is interoperable across multiple domains and application. Thus,

it eliminates the need for any other solutions to be incorporate into other organiza-

tion’s platform. Furthermore, Hyperledger Indy allows a easy-to use- password-less

authenticating with fingerprint for examples from the mobile device.

Viet-Hoa Nguyen 48

Conclusion

The project primarily showed, that while Hyperledger Fabric, as permissioned blockchain

framework with support for smart contracts, can be used in many different scenarios

to implement features, which are beneficial to the security and trust in the given data,

it is by no means applicable for every scenario.

As we’ve showed in our project, the potential of one of the flagship features - the

easy implementation of smart contracts - would not be fully ultilized, in a scenario,

in which one or more business partners want to store data from IoT devices, like

temperature sensors.

We’ve deduced, that the problem in the proposed scenario lies in the interests of

the parties involved. Because sensors are the means by which the business partner’s

asses the status of their product, there is invested interest in seeing that data at all

time.

This includes illogical data in the case of malfunctioning sensors, anomalous data, like

an unusually sharp rise in temperature, in a situation where the given product is on

fire. While the data coming from the sensors in these cases are certainly unusual, that

is an even more important reason to log and store the data, to both analyze and react

to potentially broken sensors. The smart contract system would allow us to query ev-

ery peer in the network if they endorse a transaction or not, but since there is almost

no reason not to endorse sensor data, that feature becomes almost meaningless in our

project. The smart contract could be used to detect spam, or perform checks on the

format of the transaction/sensor data, but these checks could also be implemented by

a webserver.

However, we find that storing and distributing sensor data in a blockchain, im-

proves the transparency and trust in the handling of the sensor data from the point of

49

every business partner involved. The distributed manner in which the data is stored,

prevents one of the business partners to have a monopoly on the data, which can

damper the trust, that the data is not being tempered with. The immutable char-

acteristics of the blockchain also provides an unfalsifiable record of the sensor data,

which we imagine is beneficial in a court of law, but certainly is useful when trying

to reconstruct events regarding the sensors.

Another conclusion that we’ve come to, is that following Nakamotos example [16]

of using encryption to verify the validity and authenticity of transactions, is one of

the best approaches to enhance the integrity of the blockchain. Encryption, in this

case, is just the tool for the actual feature that is beneficial, which is user/sensor

authentication.

One of the biggest weaknesses in purely storing every sensor data package, with-

out a rejection policy, besides checking if the format of the data is correct, is that

we cannot differentiate between forged or real sensor values. Anomaly detection sys-

tems always operate with a degree of fuzziness, when it comes to categorizing data.

Fuzziness in this case relates to a margin of error, with both false positives and false

negatives. In the problem analysis chapter, we’ve discussed the point, where anomaly

detection is useful. There we came to the conclusion, that theoretically, with a perfect

anomaly detection system, you could gain beneficial additional information regarding

the suspiciousness of a given data point. While such a system can theoretically detect

forgeries, by sensing tiny deviations from a detected pattern, in reality such a system

is a minefield on many levels. Anomaly detection systems can, in most cases, be

described as a statistical hypothesis test [23] and therefor will contain false positives

and false negatives. Depending on that margin of error, the benefit of using anomaly

detection to mark data, is greatly reduced. If anomaly detection where to be used

as a basis to reject data from being stored, the margin of error can be fatal for the

business partners involved. Important, but anomalous data, could then be invisible

Alexandar Vieth 50

to the involved business partners. Just anomaly detection, even in a perfect scenario,

also would not detect forged data, that resembles the regular values and patterns.

In the problem analysis chapter, we’ve described a scenario, in which an attack similar

to Stuxnet is used. An attacker that can forge sensor data to cover up the real state

of the sensors, will probably not be detected by using anomaly detection.

We’ve found that adding encryption helps to prevent these kind of man-in-the-middle

attacks. We assume that the raspberry pi was not compromised, since in that scenario,

there is not much that one can do. We have found, that ensuring the authenticity of

the provider of the sensor data is a crucial factor, which has to be implemented with

care, when handling IoT/sensor data (although that statement would also be true for

almost every system).

The combination of using a permissioned blockchain, in addition to encrypting the

sensor data produces a reasonable degree of data integrity and protection against

forgery. While not all of Hyperledger Fabrics features add values to the proposed

scenario, it does provide an easy implementation that can be used to add additional

layers of security, when handling sensor data.

Alexandar Vieth 51

Bibliography

[1] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An overview of blockchain

technology: Architecture, consensus, and future trends,” in 2017 IEEE Interna-

tional Congress on Big Data (BigData Congress), pp. 557–564, June 2017.

[2] A. Siyal, A. Junejo, M. Zawish, K. Ahmed, A. Khalil, and G. Soursou, “Applica-

tions of blockchain technology in medicine and healthcare: Challenges and future

perspectives,” Cryptography, vol. 3, p. 3, 01 2019.

[3] E. Androulaki, Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi,

G. Singh, K. Smith, A. Sorniotti, C. Stathakopoulou, and et al., “Hyperledger

fabric,” Proceedings of the Thirteenth EuroSys Conference on - EuroSys ’18, 2018.

[4] T. M. Fernández-Caramés and P. Fraga-Lamas, “A review on the use of

blockchain for the internet of things,” IEEE Access, vol. 6, pp. 32979–33001,

2018.

[5] M. Memon, S. S. Hussain, U. A. Bajwa, and A. Ikhlas, “Blockchain beyond

bitcoin: Blockchain technology challenges and real-world applications,” in 2018

International Conference on Computing, Electronics Communications Engineer-

ing (iCCECE), pp. 29–34, 2018.

[6] A. Panarello, N. Tapas, G. Merlino, F. Longo, and A. Puliafito, “Blockchain and

iot integration: A systematic survey,” Sensors, vol. 18, no. 8, p. 2575, 2018.

[7] M. Sigwart, M. Borkowski, M. Peise, S. Schulte, and S. Tai, “Blockchain-based

data provenance for the internet of things,” in Proceedings of the 9th Interna-

tional Conference on the Internet of Things, IoT 2019, (New York, NY, USA),

Association for Computing Machinery, 2019.

[8] M. Crosby, P. Pattanayak, S. Verma, and V. Kalyanaraman, “Blockchain technol-

ogy: beyond bitcoin. appl. innov. rev.(2016),” Sutardja Center for Entrepreneur-

52

ship & Technology Report, Berkeley University. http://scet. berkeley. edu/wp-

content/uploads/AIR-2016-Blockchain. pdf, 2016.

[9] “Wafer manufacturing — how are semiconductors made?.” https://

www.waferworld.com/wafer-manufacturing-process/. Accessed:

12.03.2020.

[10] “Secure secure shell.” https://stribika.github.io/2015/01/04/

secure-secure-shell.html. Accessed: 12.03.2020.

[11] P. D. Monika Chakraborty et al., “Owasp web application security quick reference

guide 0.2,” The OWASP Foundation, 2013.

[12] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/

index.php. Accessed: 12.03.2020.

[13] “Occupancy detection data set.” https://archive.ics.uci.edu/ml/

datasets/Occupancy+Detection+. Accessed: 12.03.2020.

[14] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper,

Symantec Corp., Security Response, vol. 5, no. 6, p. 29, 2011.

[15] “Man-in-the-middle attack.” https://owasp.org/www-community/

attacks/Man-in-the-middle_attack. Accessed: 12.03.2020.

[16] S. Nakamoto et al., “A peer-to-peer electronic cash system,” Bitcoin.–URL:

https://bitcoin. org/bitcoin. pdf, 2008.

[17] R. Chatterjee and R. Chatterjee, “An overview of the emerging technology:

Blockchain,” in 2017 3rd International Conference on Computational Intelligence

and Networks (CINE), pp. 126–127, Oct 2017.

[18] S. Thakur and V. Kulkarni, “Blockchain and its applications – a detailed survey,”

International Journal of Computer Applications, vol. 180, pp. 29–35, 12 2017.

53

https://www.waferworld.com/wafer-manufacturing-process/
https://www.waferworld.com/wafer-manufacturing-process/
https://stribika.github.io/2015/01/04/secure-secure-shell.html
https://stribika.github.io/2015/01/04/secure-secure-shell.html
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://archive.ics.uci.edu/ml/datasets/Occupancy+Detection+
https://owasp.org/www-community/attacks/Man-in-the-middle_attack
https://owasp.org/www-community/attacks/Man-in-the-middle_attack

[19] C. Pirtle and J. Ehrenfeld, “Blockchain for healthcare: The next generation of

medical records,” Journal of Medical Systems, vol. 42, no. 9, p. 172, 2018.

[20] Hyperledger, “hyperledger-fabricdocs documentation.” https://

hyperledger-fabric.readthedocs.io/_/downloads/en/release-

2.0/pdf/, March 2020. version:2.0, Accessed:26-03-2020.

[21] Hyperledger, “Hyperledger project.” https://www.hyperledger.org/,

March 2020. version:2.0, Accessed:2020-03-02.

[22] Flask, “Flask web development.” https://flask.palletsprojects.

com/en/1.1.x/, March 2020. version:2.0, Accessed:26-03-2020.

[23] A. Soule, K. Salamatian, and N. Taft, “Combining filtering and statistical meth-

ods for anomaly detection,” in Proceedings of the 5th ACM SIGCOMM conference

on Internet Measurement, pp. 31–31, 2005.

54

https://hyperledger-fabric.readthedocs.io/_/downloads/en/release-2.0/pdf/
https://hyperledger-fabric.readthedocs.io/_/downloads/en/release-2.0/pdf/
https://hyperledger-fabric.readthedocs.io/_/downloads/en/release-2.0/pdf/
https://www.hyperledger.org/
https://flask.palletsprojects.com/en/1.1.x/
https://flask.palletsprojects.com/en/1.1.x/

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Project Description
	Project Overview
	Purpose
	Scope
	Scenario
	Problem analysis
	Sensor data trust
	Unusable benefits of Blockchain and Smartcontracts

	Blockchain
	Introduction
	Blockchain Architecture
	Working Principle
	Types
	Public /Permissionless
	Private
	Permissioned

	Hyperledger Fabric
	Overview
	Fabric Components
	Smart Contract
	Architecture
	Transaction Flow

	Design
	Use Case Diagram
	Architecture
	Components
	Hyperledger Fabric Network
	API
	Sensor
	UI

	Data Encryption
	Client Authentication
	Application Flow

	User Interface
	Project Timeline
	Gantt Chart
	Individual Contribution

	Project Issues
	Issues Faced
	Network setup problem
	Security problem
	Conclusions

	Solutions
	Solutions to network configuration issues
	Solutions to security issues

	Remaining Problems
	Suggestion for further improvements

	Conclusion
	Bibliography

