

Faculty Informatics

Bachelor of Science – Business Information Systems

Bachelor Thesis

Development of a distributed cloud-based system

for crawling public real estate relevant data

 for a large German real estate portal

 Name: Nguyen, Viet Hoa

Student number: 2896037

Email: nguyenviethoa95@gmail.com

Submission date: 12.07.2019

Cooperating partners: Immowelt AG

Axel Schwanke

Maxim Fridental

First examiner: Prof. Dr. Michael Zapf

Second examiner: Prof. Dr. Friedrich Stappert

https://www.linguee.de/englisch-deutsch/uebersetzung/cooperating+partners.html

Acknowledgements

Acknowledgements

My bachelor thesis was written from March 2019 to August 2019 in the

product management department at Immowelt AG

I would like to express my most sincere thanks to the Big Data team which

always provided me a nice working environment, with a lot of help, and

support. A special thanks for my advisors Axel Schwanke, Maxim

Fridental, and my colleague Stefan Nagel for their professional advices.

A special thanks to my advisor Prof. Dr. Michael Zapf for being always

ready to help, and to support my work with patience.

Declaration

Declaration

“I affirm that this bachelor thesis was written by myself without any

unauthorized third-party support. All used references, and resources are

clearly indicated. All quotes, and citations are properly referenced. This

thesis was never presented in the past in the same or similar form to any

examination board. I agree that my thesis may be subject to electronic

plagiarism check. For this purpose, an anonymous copy may be

distributed, and uploaded to servers within, and outside the Nuremberg

Institute of Technology”

Nuremberg, 12.07.2019

Nguyen, Viet Hoa

Tables of Contents

i

Table of Contents

List of Abbreviations

List of Figures

List of Tables

1 Introduction .. 1

1.1 Immowelt AG .. 1

1.2 About the “Baukarte” project... 1

1.3 Purpose of the web crawler ... 2

1.4 Research method ... 3

1.5 “Amtsblatt” Data Source ... 1

1.6 Structure of the thesis ... 6

2 Theoretical Background ... 7

2.1 Web Crawling .. 7

2.1.1 Motivation ... 7

2.1.2 Concept of crawling ... 8

2.1.3 Types of web crawlers ... 9

2.2 Serverless Computing ... 9

2.2.1 Definition .. 10

2.2.2 Serverless architecture .. 11

2.2.3 Serverless Application Programming Model .. 12

2.2.4 AWS Serverless Services in comparison .. 12

2.3 Function as a Service .. 15

3 Design, and Conception .. 18

3.1 Requirements .. 18

3.2 Crawler design .. 19

3.2.1 Initializer Module ... 22

Tables of Contents

i

3.2.2 Website Watcher Module... 22

3.2.3 Hyperlink Collector ... 23

3.2.4 Hyperlink Processor Module .. 25

3.2.5 Data Storage .. 26

3.3 Serverless deployment development .. 26

3.3.1 Purpose .. 27

3.3.2 Goal .. 27

3.3.3 Concept ... 27

4 Implementation .. 29

4.1 Development environment, and Frameworks ... 29

4.2 Implementation of the core functions ... 30

4.2.1 Initializer Module .. 30

4.2.2 Website Watcher Module .. 31

4.2.3 Hyperlink Collector Module .. 32

4.2.4 Hyperlink Processor Module ... 32

4.2.5 Job Queue .. 33

4.2.6 Adopted AWS Services ... 36

4.3. CI/CD Pipeline ... 41

4.3.1 Frameworks, and development environment. ... 41

4.3.2 AWS Resources CI/CD pipeline ... 43

4.4 Evaluation .. Error! Bookmark not defined.

5. Conclusion ... Error! Bookmark not defined.

References ... 53

Tables of Contents

i

List of Abbreviations

API Application Programming Interface

AWS Amazon Web Service

AWS EC2 Amazon Elastic Compute Cloud

AWS S3 AWS Simple Storage Services

AWS SQS Amazon Simple Queue Service

CLI Command Line Interface

FaaS Function as a Service

HTML Hypertext Markup Language

HTML Hypertext Markup Language

HTTP Hyper Text Transfer Protocol

IaC Infrastructure as Code

URL Uniform Resource Locator

Tables of Contents

ii

List of Figures

Figure 1: Project concept ... 2

Figure 2: Phrases of the research conducted in the actual project .. 3

Figure 3: Bochum Official Journal HTML Code ... 1

Figure 4: Screenshot of Bochum Official Journal .. 2

Figure 5: Screenshot of Göttingen Official Journal ... 2

Figure 6: Screenshot of Göttingen Official Journal Year 2019 .. 3

Figure 7: Screenshot of Bremen Official Journal ... 4

Figure 8: Bremen’s Official Journals 2019 .. 5

Figure 9: Flow chart of a crawler. Source: [36] (p.4) .. 8

Figure 10: Gartner Hype Cycle for Emerging Technologies. Source: Gartner 10

Figure 11: Serverless application layers .. 11

Figure 12: FaaS Processing Model .. 16

Figure 13: Workflow of the web crawler ... 19

Figure 14: A generic work queue. Adapted: Burns [12] .. 20

Figure 15: Components of web crawler .. 21

Figure 16: Workflow of Website Watcher Module .. 23

Figure 17: Workflow of the Hyperlink Collector Module .. 24

Figure 18: Workflow of Hyperlink Processor .. 26

Figure 19: Initializer Module implemented with AWS Services .. 31

Figure 20:Website Watcher Module implemented with AWS Services .. 31

Figure 21.Hyperlink Collector Module implemented with AWS Services 32

Figure 22: Hyperlink Processor Module implemented with AWS Services 33

Figure 23: SQS as Lambda's trigger on the left handside ... 33

Figure 24: AWS SQS as trigger for Lambda function ... 34

Figure 25: Simplify architecture of a running Lambda function .. 36

Figure 26: Configurations of AWS Lambda Function .. 37

Figure 27: Result after invocation of Lambda function .. 37

Figure 28: GitLab CI/CD pipelines ... 41

Figure 29: Terraform API call .. 42

Figure 30: Terraform project repository in GitLab .. 43

Figure 31: Deployment pipeline for AWS Infrastructure ... 44

Figure 32: Deployment pipeline - AWS Lambda function .. 46

Figure 33: Screenshot - PDF folders stored in S3 Bucket .. 50

Figure 34: Screenshot - Content of Berlin's folder .. 50

Figure 35: Json structure - PDF metadata ... 51

file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301987
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301988
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301995
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301997
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13302003
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13302004

Tables of Contents

iii

List of Tables

Table 1: AWS S3 Pricing for region eu-central-1 (Frankfurt) at the time of writing 39

Table 2: Project structure of AWS Lambda function Error! Bookmark not defined.

1 Introduction

1

1 Introduction
This chapter gives an overview of the company Immowelt AG, explain the motivation

behind this project, and discusses the scope of my work.

1.1 Immowelt AG

Immowelt AG offers complete IT solutions for the real estate industry. The core business

of the company is the real estate portals immowelt.de, immowelt.at, and immowelt.ch as well as

bauen.de, ferienwohnung.com, and wohngemeinschaft.de. This reflects in the second business area

of the company - the development of CRM software for the real estate agents estateOffice,

estatePro, and immowelt i-Tool. The main portal immowelt.de went online in 1996. It allows the

private owner to offer or to rent private real estate property. Besides, the user will find

extensive information on the topics of living, building, and financing, as well as price

overview of the real estate market [1]. In 2000, DataConcept GmbH was renamed

Immowelt AG. In 2015, Immowelt AG merged with its competitor Immonet GmbH

under the name Immowelt Holding AG. Today more than 500 employees work in two

locations in Nuremberg, and Hamburg [2].

1.2 About the “Baukarte” project

With the vision of being the number one real estate portal in Germany, it is essential to

continually come up with innovative features, which has not been developed by any other

real estate portals. One of those features could be the interactive building profile for

Germany.

With this feature, the real agent estate should be able to keep track of the upcoming plan

for new buildings with a visual representation on an interactive map. Nowadays,

interactive maps used not only on geo-data-specialized websites but also on real estate

portals and become a trend for visualizing mass data. Building permits, and public real

estate plans in the neighborhood often have a significant impact on the prices of real

1 Introduction

2

estate property. For example, l, and value often goes up with planned increases in

residential building permits.

Project concept

The end-product of the project is planned to be a new feature on the immowelt.de website

for real estate agents. The official announcement should be collected automatically (1).

After that, the building permit will be extracted (2), the raw text will be tokenized (3),

transformed (3), and stored in the database (3). The information will be visualized on an

interactive map (4).

The project team consisted of three students from the Nuremberg Institute of

Technology (Technische Hochschule Nürnberg Georg-Simon-Ohm). The company

representative was the project’s product owner from the product management

Department and interacted closely with the student team. The first student took

responsibility for the presentation layer, which visualizes building a permission based on

Google Map API. The second student developed an automatic text mining pipeline to

create visualizing components from building permissions in PDF. This thesis contributes

to the first step of the project “Automated data collection”. It should deliver an automated

mechanism to collect the data for the application. The overall architecture of the

“Baukarte” project can be viewed in Appendix A and B.

1.3 Purpose of the web crawler

The use of the web crawler is inevitable when it comes to collecting massive data set. The

use case for the web crawler implemented in this thesis is to extract information from an

official announcement containing new building permissions. While running web crawler

on a local machine is fine or do-once tasks, and a small amount of data, where the crawling

process can be triggered manually. However, this is not a sustainable, and reliable solution

for retrieving a huge amount of data. Web crawler can be optimized with deploying into

the cloud to reduce operational management and increase parallelism. Cloud computing

also provides greater flexibility in term of computing capacity, and IP address.

Figure 1: Project concept

1 Introduction

3

1.4 Research method

The purpose of this section is to introduce the methodology for developing a distributed

web crawler using cloud services. The research attempts to experiment and design a

possible solution for the distributed web crawler, and practices for adopting cloud

services. The solutions should also include technical implementation fulfilling the

practices of continuous development, and deployment process. As such, the thesis is

aimed to deliver a solution for a practical problem, and “the problem cannot be proven

mathematically, and tested empirically“ [3]. The research method of this thesis is inclined

toward the methodology for the system development research published by Nunamaker,

Chen, and Purdin [3]. Figure 2 depicted the five different phrases of system development

research, and corresponding phases in the project.

First, and foremost, a literature review is carried out to study how a web crawler works,

and how should it be designed. The result of the first stage is a reference architecture

show in Figure 9 in section 2.2.1. The second stage, which is displayed in Figure 15 in

section 3.2, designs the architecture to be implemented. Functional, and non-functional

requirements must also be defined, and identified in this stage, which are presented in

section 3.1. The third stage involves designing the crawler components. The fourth stage

presented in chapter 4 involves in translating the chosen design into code. Lastly, the

developed system will be evaluated, and compared with the objective at the beginning,

the test results will be summarized in chapter 5.

Figure 2: Phrases of the research conducted in the actual project
Adapted from: Nunamaker et al.

1 Introduction

1

1.5 “Amtsblatt” Data Source

In Germany, a municipality (“Stadt”, “Landkreis”, “Gemeinde”) has the responsibility to

publish their official journals (Amtsblatt). In these journals, the information about new

regulations, construction projects of the municipal council can be found. An example of

a typical official can be found in Appendix B. It also includes the real estate relevant

information such as land-use plan, development plan, and construction zoning map. To

some extent, these journals can be viewed on their website, and are available for download

in PDF format. Some journals do not have an online version and are available only in

printed version.

In this section, three different “Amtsblatt” website that provides a list of “Amtsblatt”

(official journal) will be compared. The sites we analyzed were Bonn Amtsblatt1, Bochum

Amtsblatt2, Bremen Amtsblatt3. These websites represent the most common official

journal website layout. In the section below, a general analysis of the HTML layout will

be presented for each of the three websites.

a. Bochum Official Journal

As can be seen in Figure 4, the layout consists of a site header with general information,

searching, and navigation. The horizontal navigation on the left-h, and side enables the

user to navigate to other sites of the city municipality council. The yellow region is the

main content of the page, which displays the list of official journals chronologically. The

page has a basic Hyper Text Markup Language (HTML) structure, all the official journals

are ordered in a list using the tag. Each of tag contain a nested <a> tag which

redirected the user to the webpages where the official journals can be seen.

Figure 3: Bochum Official Journal HTML Code

This type of website can be classified as a simple listing style website, where all of the

documents are listed directly in the main page. This basic HTML structure makes it easier

to identify the official journals through the <a> tags.

1 https://www.bonn.de/service-bieten/aktuelles-zahlen-fakten/amtsblatt.php
2 https://www.bochum.de/amtsblatt
3 https://www.amtsblatt.bremen.de/

https://www.bonn.de/service-bieten/aktuelles-zahlen-fakten/amtsblatt.php
https://www.bochum.de/amtsblatt
https://www.amtsblatt.bremen.de/

1 Introduction

2

Figure 4: Screenshot of Bochum Official Journal

b. Göttingen Official Journal

The screenshot in Figure 5 shows the site layout of Göttingen Official Journal. As can be

seen, the official journals list cannot be viewed directly on the main page. They can be

only detected if the user clicks on one of the three boxes ordered by year.

Figure 5: Screenshot of Göttingen Official Journal

1 Introduction

3

Once the user clicks on the boxes, they are redirected to another website, where the

list of documents can be seen, and are available to download, as seen in Figure 6.

Figure 6: Screenshot of Göttingen Official Journal Year 2019

c. Bremen Amtsblatt

In the screenshot of Bremen Official Journal, the list of official journals is also not

available on the main page. First, the user is required to choose a year in from the

dropdown list (marked yellow) and clicks on “Suche” button. Once a year is chosen,

the page loads again, and list of documents of the chosen year are showed underneath

the dropdown list in Figure 8.

1 Introduction

4

Figure 7: Screenshot of Bremen Official Journal

This responsive web design of this official journal website, which contains the JavaScript

elements such as the search box makes it extremely complicated to be crawled. Because

the link to the PDF files cannot be found directly in the HTML code on the main page.

Firstly, the crawler must be able to automatically identify that there is a dropdown list in

the HTML code. Secondly, it must simulate a user action of choosing the link in the

dropdown, and a click on the search button. This set of action could be accomplished on

a single website with some web browser automation tool such as Selenium 4. However,

this solution also not generic when it is applied to several websites. Because the

automation tool can only work with the condition that the ID of the dropdown element

is provided. It would be very time consuming to manually investigate the HTML code in

order to retrieve the ID of each dropdown element of each website. Furthermore, It

would be impossible to write a generic crawler fulfilled this requirement.

4 https://www.seleniumhq.org/

1 Introduction

5

Figure 8: Bremen’s Official Journals 2019

d. Scope of the thesis

The examples mentioned above only cover a small fraction of possible website layouts

available on the Internet. Because there is no standard for designing an official journal

site. The wide variety of website layout makes it impossible to make a generic crawler that

is suitable for all web layouts. It would be very unpractical to review and handle all kinds

of website layouts. Notably, the website layout that has some JavaScript elements in it

requires individual crawler configuration. In limited time of a bachelor thesis, it is

unrealistic to be able to develop a crawler for three types of website layouts. As a result,

only 50 official journal websites of 50 municipal councils will be chosen to be crawled.

These websites share the same overall layout of the Bochum Official Journal site, in which

the list of documents is available directly on the main page. This type of HTML structure

contains no redirecting to other pages allows for easy identification, and retrieval.

1 Introduction

6

1.6 Structure of the thesis

This thesis is arranged into fives chapters including this chapter:

Chapter 2 – Theoretical Background introduces the terminology, technologies, and

concepts which will be used throughout this thesis. It introduces terms like cloud

computing, serverless computing, and web crawling.

Chapter 3 – Design and Conception provides the necessary designs for the

implementation in chapter 4. First, it addresses the expectations for a project-specified

web crawler. From the system perspective, some functional requirements must be

addressed with care to guarantee that the crawler meets all the functionalities needed. The

functional requirements support the design process of the web crawler later in this

chapter. The design presents the overall architecture of the web crawler and details about

each module. The design for the deployment pipeline of the crawler are also introduced

at the end this chapter.

Chapter 4 - Implementation describes the process of transforming the web crawler’s

design in previous chapter with AWS Services. In addition, it also describes how the

deployment pipeline is implemented.

Chapter 5 – Conclusion examines the web crawler and the deployment pipeline in terms

of performance. Based on the examinations, the limitations and suggestions for further

improvements, before it ends the thesis with a personal conclusion about the thesis.

2 Theoretical Background

7

2 Theoretical Background

This chapter lays the theoretical foundation for the design, and implementation of the

web crawler in this thesis. The outline of this chapter is as followings: the first section will

introduce the motivation of web crawling in this thesis and gives a brief description of

how web crawlers work under the hood. The second section of this chapter will introduce

Serverless Computing as an umbrella term. The last section reviews two important

technologies Serverless and Function as a Service and explains how these technologies

can be utilized to build our application.

2.1 Web Crawling

2.1.1 Motivation

With the exponential growth of information sources available on the World Wide Web,

exploring web data becomes an integral part of many big enterprises, it can range from

collecting customer opinions about products, exploring data for scientific research or

even to build an application on top the data collected. Furthermore, the unstructured

information from Web pages needs to be transformed into structured information that

can be used in a subsequent stage of analysis. An automated program as known as a web

crawler, which scans through the web, and downloads the pages which can be reached by

the links, is the key to massive data collection. The two main reasons are:

A user needs to think, grab the mouse, point to the link, click on it, and finally copy paste

content of a web page, whereas a computer program can perform this in milliseconds. It

is straightforward to use an automated program to request, and parse web content.

Using a web browser to search web content is a visual and intuitive but not very useful

way of gathering massive data from the World Wide Web since the content rendering

process is long-running.

2 Theoretical Background

8

The largest application field of web crawler is for commercial search engines such as

Google, Bing, and Yahoo!, which are used by millions of users daily around the world.

Google, for example, developed its crawler known as Googlebot, which traverses web

pages by following hyperlinks, and stores web documents that are later indexed to

optimize the search process. Although Googlebot is believed to be the first large-scale

web crawler in the world, the history of web crawler can be traced back long before the

launched of Google in 1997.

2.1.2 Concept of crawling

Figure 9 shows the flow of a basic crawler. In this most straightforward form, a crawler

starts from a set of seed pages (URLs), and then uses the links within them to fetch other

pages. The link in these pages are, in turn, extracted, and the corresponding pages are

visited. The unvisited URLs are called the frontier. The list is initialized with the seed

URLs which may be provided by the user or another program.

In each iteration of its main loop, the crawler picks the next URL from the frontier,

fetches the page corresponding to the URL through HTTP, parses the retrieved page to

extract its URLs, adds newly discovered URLs to the frontier, and stores the page in a

Figure 9: Flow chart of a crawler. Source: (p.4)

2 Theoretical Background

9

local disk repository. The crawling process may be terminated when a certain number of

pages have been crawled.

2.1.3 Types of web crawlers

Web crawlers may differ from each other in the way they crawl web pages. This is mainly

related to the final application that the web crawling system will serve. Crawlers can be

classified into four categories [4]:

Focused Crawler is for discovering and retrieving web pages that are related to a specific

area of interest. The relevance of the web pages must be determined before being crawled.

This kind of crawler requires less hardware and bandwidth resources.

Incremental crawler periodically revisits the pages. During its crawls, it may also add new

pages into its data collection in order to keep the data collection fresh. The crawler also

replaces old, and less important pages by new, and more relevant pages. The advantage

of incremental crawler is that data enrichment is achieved.

Distributed crawler utilizes distributed computing to distribute the workload on many

crawlers. There is a central server manages the communication, and synchronization of

the workers. Distributed crawler is robust against system crashes, and other events, and

is adaptable to many crawling applications.

Parallel crawler executes multiples crawlers simultaneously. This kind of crawler offers

the solution for retrieving web pages content in a reasonable amount of time.

2.2 Serverless Computing

It is worth to mention that the focus of this thesis is on Amazon Web Services (AWS),

because Immowelt AG has chosen AWS as their main computing platform. With the

ambition to migrate some of the core infrastructures into the cloud environment. It is

practical to have a look at the existing cloud computing models in advance. One of the

emerging models is Serverless Computing. As such, it is recommended that IT company

start to learn its opportunities, and limits, identify best practices, and pilot test cases to

build knowledge, and skills.

Serverless is listed in the top 10 Trends and Impacting Infrastructure & Operation for

2019 by Gartner in one of their recent articles [5]. It is predicted to become a mainstream

between 2010, and 2022, with 10% of IT organizations already using serverless

2 Theoretical Background

10

computing. This can be reflected in the fact that the three largest cloud providers all have

their own platform for serverless computing 5 6 7. This reflects the explosion of interest in

Serverless. Gartner classified serverless as being in its initial cycle phase, “innovation

trigger”.

Figure 10: Gartner Hype Cycle for Emerging Technologies. Source: Gartner

2.2.1 Definition

Serverless Computing is an emerging paradigm for cloud computing, it is hard to find a

universal definition. Due to the lack of terminology, Serverless, and FaaS are often used

5 AWS Serverless https://aws.amazon.com/serverless/
6 Microsoft Azure Serverless https://azure.microsoft.com/en-us/solutions/serverless
7 Google Cloud https://cloud.google.com/serverless

2 Theoretical Background

11

interchangeably by the user community [6]. However, it is worth differentiating between

FaaS, and Serverless Computing.

Serverless Computing is a broad notion refers to a cloud-computing execution model in

which the application runs on servers that are fully managed by a third party [7]. In other

words, Serverless Computing is a cloud computing model in which code is run as a service

without the need to maintain or create the infrastructure. As a result, Serverless

application can be considered as a cloud-native application, which is deployed on an

abstracted infrastructure owned, and managed by cloud providers.

Serverless covers a range of techniques, and technologies including Backend as a Service

(BaaS), and Function as a Service (FaaS) [8]. Backend as a Service is a cloud model in which

developers outsource all the backend components of a web or mobile application. Typical

BaaS Services are user authentication, database management, remote updating, and push

notifications, as well as cloud storage, and hosting [9]. Function as a Service will be

discussed thoroughly in section 2.3.2 as it will be used intensively in our application.

2.2.2 Serverless architecture

Serverless architecture relies completely on

cloud technology. Following the white paper

about AWS Well-Architected Framework

published by AWS in 2018 [10] as shown in

Figure 11, a serverless application can be

decomposed into a five layers model to

facilitate good design in the cloud including:

• Compute layer manages requests from

external systems, controlling access, and

ensuring requests are appropriately authorized.

It contains the runtime environment that the

business logic will be deployed and executed by

• Data Layer manages persistent storage

from within a system. It provides a mechanism

to store states that the business logic will need.

• Messaging, and Streaming Layer: The messaging layer manages communications

between components. The streaming layer manages real-time analysis and processing

of streaming data.

Figure 11: Serverless application layers

2 Theoretical Background

12

• User Management and Identity Layer provides identity, authentication, and

authorization for both external, and internal customers of the application.

• System Monitoring and Deployment manages system visibility through metrics, and

creates contextual awareness of how it operates, and behaves over time.

2.2.3 Serverless Application Programming Model

Besides the benefits of scalability without additional configuration. Serverless computing

has effects not only on how applications are executed but also how they are developed.

Development, and Debugging

Local debugging is complicated. Because the application is expected to be executed in the

cloud, and sometimes being triggered by other cloud services, it requires a lot of time to

reproduce a production execution environment in local debugging. Serverless application

can be debugged, and test locally by writing custom wrapper. Integration test can be done

by adopting practices such as mock or stub test.

Infrastructure Management, and Deployment

The serverless application is not only about functions, it contains multiple resources such

as database, queue service, log monitoring, and security credentials. AWS provides web

console, AWS CLI, and AWS Serverless Application Model (AWS SAM) for managing

serverless resources. AWS SAM is a good choice for managing multiple resources

application since it is written over AWS CloudFormation, a native AWS tool for defined

AWS Resources.

2.2.4 AWS Serverless Services in comparison

It is worth to get familiar with existing services before choosing the suitable one for

development. The three primary computing services of AWS Serverless, namely AWS

Batch, AWS EC2, and Lambda were taken into consideration for the deployment of the

web crawler. Each service was experimented to gain insights about its strengths and

drawbacks.

a. AWS Batch

2 Theoretical Background

13

AWS Batch 8 is a fully-managed service by AWS, which will provision the optimal

quantity, and type of compute resources. AWS Batch has the following component. Job

queue contains the jobs, which is an independent task to be executed with multiple inputs.

These jobs are defined with a job definition, which is basically a Docker image

encapsulating the business logic code. AWS Batch monitors the ongoing jobs, and job

queues , and can auto-scale cluster capacity depending on workload. AWS Batch

uses Elastic Container Service (ECS) for orchestrating Docker containers for running

tasks. AWS does not charge an extra fee for the batch jobs, they only charge for the

resources which Batch jobs are using such as EC2 Instance, S3 Storage. With AWS Batch,

the crawler can be implemented as followed. The business logic of the crawler can be

defined in a job definition, the seed URLs can be put in the job queues. Once started the

job will receive one URL from the job queues and perform the crawling process.

Advantage

AWS Batch is efficient for provisioning the optimal used of computing resources that are

required for performing the batch jobs. Because it is fully integrated with AWS Platform

so it utilized the networking, scaling of the AWS.

Disadvantages

As each Batch job is a containerized application, Batch expects the Docker skill from the

developer. The lack of experience with Docker might lead to some hidden problem. In

addition, it is worth to mention that the user interface is confusing for developers who

are not familiar with AWS. Because it is less intuitive when compared to other AWS

Services. One important point is that AWS Batch doesn’t have a job history that supports

monitoring, which makes it extremely difficult to monitor its behavior. Furthermore,

Batch is a less popular services of AWS. The development with AWS Batch is

cumbersome with little support from the community. Last but not least, there are less

documentation about the operational behavior of Batch, which might be hard for

troubleshooting, and fixing the application.

b. AWS EC2

AWS EC29 is a virtual cloud infrastructure service, which provides on-demand computing

resources (instances) to create powerful servers in the cloud. AWS EC2 instances can be

scaled in terms of processing power, and computing memory.

8 https://aws.amazon.com/batch/
9 https://aws.amazon.com/ec2/

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://aws.amazon.com/ec2/

2 Theoretical Background

14

Advantages

The most significant advantage of EC2 is its ability to scale horizontally with increasing

workload. It is what makes EC2 very attractive services for hosting provider. The instant

setup of newer server instances in minutes with a click of a button allows.

Disadvantages

Although the setting up for a single EC2 machine can be easy, being able to scale up EC2

is not as much convenient. In order to scale out the EC2 Instances in a cost-efficient

manner requires predicting the incoming workload. Besides, the cost model of AWS EC2

is also not very flexible. The user has a large upfront payment even if they do not fully

use the instances in the purchase length. It is also hard to decide which instance types is

suitable, it is sometimes forced to get bigger instances only more CPU or RAM are

needed. In general, the entire configuration, and setup process demands comprehensive

technical knowledge, and requires proper training. The learning curve of EC2 can be steep

and can take some time to be fully familiar with this service.

c. AWS Lambda in conjunction with SQS

AWS Lambda 10 is a Serverless FaaS runs backend code without configuring and

managing a platform or infrastructure.

Advantages

The basic advantage of Lambda is that the user only pays for the time the function

running, and the resources it need to execute. AWS Lambda functions are billed by the

millisecond of CPU time. The main distinguishing feature of Lambda rapid development.

AWS Lambda enables faster prototype, and the developer must spend less time on

operational issue. Furthermore, the building, and deploying of Lambda is straightforward,

and is simple when compared to deploying an entire server. The developers can even

write the code directly in the AWS Lambda Console. It is a good starting point for

developer with less or no experience with developing in AWS. Since it is easier for

developer to concentrate on the application logic.

Disadvantage

The lack of control over environment should be considered before using Lambda, the

developers are not able to custom install packages or software on the running

10 https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

2 Theoretical Background

15

environment. AWS Lambda functions also suffered from cold start, the delay by the first

function invocation or invocation after a long idle time. The debugging and testing of

Lambda can be troublesome but can be alleviated by using some framework.

d. Conclusion

Each of the services mentioned above has a niche where its suits best. AWS Batch is a

new computing platform, which can have a lot of potentials but need to be study careful

before usage. EC2 in conjunction with Elastic Load Balancing is also excellent for web

hosting. For example, if EC2 is used to host a webpage, the computing resources being

used is constant. However, the cost to use EC2 is unpredictable since we cannot calculate

exactly the crawling workload.

Based on the weakness, and the strength of each service, AWS Lambda in conjunction

with AWS SQS was chosen for the deployment of the web crawler, because it is easy to

get familiarized with and quick to develop a first prototype. Furthermore, the usage of

AWS Lambda has raised a lot of interest at the company since it is a most popular

Function as a Service, an emerging cloud computing service.

2.3 Function as a Service

Function as a service (FaaS) is a new service offered by cloud providers. This is supported

by the fact that the “cloud function” products such as AWS Lambda11, Azure Functions12,

and Google Cloud Functions13. The idea behind FaaS is that the developers can develop,

execute, and manage their own code without having to handle the under lying complexity.

The developer only needs to write his function code and define the function with an

event. The occurrence of this event will trigger the execution of the function, as known

as invocation. After the function finishes an execution it will be immediately terminated.

This makes FaaS cost-effective in comparison with other computing models, because the

user is only charged for the time a function is running. Launching a web server on a virtual

machine, for examples Amazon EC2, will be charged per hour, even if there are no

requests come in. The second benefit of FaaS is auto-scaling is handled completely by the

cloud providers. This will allow the application to be more responsive since it is designed

to be scaled at any unpredictable workload. In general, a serverless might be a good choice

11 https://aws.amazon.com/lambda/
12 https://azure.microsoft.com/en-us/services/functions/
13 https://cloud.google.com/functions/

2 Theoretical Background

16

for a workload that is asynchronous, easy to parallelize into independent units of work. It

can also good at handling infrequent or sporadic dem, and.

Figure 12: FaaS Processing Model

The execution model behind FaaS is described in Figure 12. Whenever there is a new

incoming request through the API, an available instance within the pool is used to handle

that request. The corresponding code of the requested will be retrieved from a code

repository and pushed into a container. The container is then pushed to the chosen

instance and executed. The result is then returned to the client, who sent the request

through the cloud provider interface (API). The code is maintained and pushed into code

repository by the developer.

The “cold start” problem arises from this execution model in other word the first

execution of function always takes longer time. Because the container has to be spun up,

and the code has to be loaded into the container. The next execution won’t take as much

time as the first one since the container is already “warm”. However, after a long period

of idle time, the container will be terminated, and the delay problem will happen again.

Conclusion

In conclusion, serverless computing in conjunction with Function as a Service leveraged

with task queueing for batch processing is a promising technology to implement batch

processing on premise. However, there are still open questions related to this architecture,

namely:

• How to design a serverless architecture?

2 Theoretical Background

17

• How to meaningfully implement the business logic with the lambda function on

cloud platforms?

• How to deploy a serverless application fast on cloud platforms?

3 Design and Conception

18

3 Design and Conception

This chapter will present the design of the crawler. Chapter 3 will be organized as

following: Section 3.1 will present the requirements. Section 3.2 will give an overview of

the system’s architecture and explain the role of each component. Section 3.3 will

propose a deployment pipeline for the applications.

3.1 Requirements

The requirement analysis aims to identify the most important specifications for the web

crawler and to consider the feasibility of them. The requirement analysis was done as

follows. At the beginning stage of the project, the product owner proposed the initial

ideas of the project in the kick-off meeting. The software requirements analysis is

conducted independently based on the product owner’s ideas. Although the requirement

analysis and architecture choice were done, they are not completely fixed. During the

development, the product owner, and the team Big Data were involved all the time and

introduced additional requirements.

These are the requirements from both functional, and non-functional perspectives:

• The application must be deployed and run completely on the cloud environment to

avoid IP being blocked.

• The crawler must behave politely and following the robot.txt rules.

• The results of the crawling process must be according to the use case:

o Unstructured Data must be stored in the S3 object store.

o Metadata, logging data must be stored in a relational database.

• The crawler should be designed and implemented generically in term of the

monitoring of crawling jobs.

• The interface for monitoring crawling jobs has the following specification:

3 Design and Conception

19

o Enables the monitoring following metrics: the number of successful, deferred,

and failed jobs. Deferred jobs are jobs that have a temporary error and needs to

be relaunched.

o Allows users to keep track of the crawling history: last crawling history, crawling

schedule plan.

o References to the cost of the crawler history.

• The programming language of choice should be Python. Furthermore, the crawler

should be easily written and debugged locally.

3.2 Crawler design

The following section is organized as follows. In the first subsection, a general workflow

of a web crawler is introduced, which serves as a starting point for the choice of

architecture type. After that, a suitable, and high-level architecture approach is chosen

based on the workflow analysis. The last section will describe how the crawler is designed

in detail by explaining each of its components in term of business logic.

General Workflow

Figure 13 presents the general workflow of the crawling process in favor of a focused

web crawler. It is obligatory to implement a focused web crawler, as the crawler is

expected to only retrieve the official journals, and no other types of documents on a

webpage in order to avoid contaminating the database with irrelevant data. The high

accuracy of the PDFs discovered will help to reduce the effort spent in re-filtering the

PDFs in the next phase of the “Baukarte” project, which involves in data mining, and text

extraction.

Figure 13: Workflow of the web crawler

SEED

QUEUE

QUEU

E

URL

QUEUE

QUEU

E

3 Design and Conception

20

The workflow consists of three main steps. First, the input retrieval part fetches the data

from a data source, in this case, the seed URLs from the database. Secondly, the business

logic processing part applies a set of predefined business logic to each item (URL).

Examples can be extracting hyperlink from the HTML markup and classifying them. If

the URL is predicted to be on-topic, then its links are extracted and are appended into

the URLs. Thirdly, a worker will fetch the URL links, and download them into persistent

storage. The workflow can be periodically repeated maybe once or twice a week in order

to keep the PDF collection fresh.

Distributed message queue as a solution

Based on the workflow in Figure 13, it is easy to recognize that the crawling process has

the characteristics of batch processing. Firstly, the crawling process only needs to be

executed periodically. Secondly, the crawling processing can be fully automated, and

therefore no human interaction is needed.

According to Burns [11], in order to reduce the processing time, a simple technique can

be applied such as message queue. Figure 14 shows the idea behind the work queue

system, which can be divided into four components: producer, task queue, queue

manager, and a pool of workers. The producer pushes messages into the queue. Each

message contains a task. Each task might be a small unit of data needed to be processed

in the same way. The queue manager has the responsibility to distribute the tasks evenly

to the workers. It will poll, and assign the tasks to any worker, which has the free executing

capability. The random distribution is allowed, because the tasks are independent of each

other, and do not need to be processed sequentially. The usage of a message queue for

batch processing has three advantages:

Figure 14: A generic work queue. Adapted: Burns [11]

Firstly, the message queue serves as a buffer between the producer and the worker, which

increases the efficiency of the producer. For examples, if the producer, and the worker

have different processing rates. The producer can still work asynchronously from the

3 Design and Conception

21

worker and do not have to wait until the worker finishes the previous task to process a

new task.

Secondly, the workers can be scaled up or scaled down to ensure that the work can be

handled within a certain amount of time. This increase the parallelism of the web crawler.

Lastly, the message queue system also shows high compatibility to the deployment model

(AWS Lambda). It allows the application to be designed following the best practices

recommended by AWS [10]: singularity, scalability, and stateless. The Lambda function

has a single purpose and has a concise business logic. Lambda function can be scaled up,

and down based on the workload. After each execution, Lambda passes the output to

another queue or other functions and terminates, which makes it completely stateless.

Based on the huge advantages of message queue shown above, it is the best candidate for

the crawler architecture and is chosen to implement the web crawler. Figure 15 shows the

components of the web crawler including:

• Initializer Module triggers the crawling task so that it will be started periodically

without any user’s interaction.

• Website Watcher Module monitors website-contents changes and informs the

Hyperlink Collector Module about websites that should be crawled or re-crawled.

Figure 15: Components of web crawler

• Hyperlink Collector Module is in charge of parsing websites HTML markup,

identifying links for PDF file, retrieving the hyperlinks, indexing, and storing eligible

links in the database.

3 Design and Conception

22

• Hyperlink Processor Module is responsible for downloading the PDF files, indexing,

and storing the file in the AWS S3 Object Store with their IDs.

3.2.1 Initializer Module

The crawler is initiated by the Initializer, which executes on schedule. Once started, it will

open a connection to the database read all the URLs of all city and put them into the seed

queue.

3.2.2 Website Watcher Module

Function

Website Watcher Module is the component that implements its business logic. It has the

responsibilities to detect the content changes in the webpage and assigns the website with

changes detected to further steps. The purpose of it is to reduce the computational

resources in incremental crawling round after the initial crawling round. The business

logic discussed above can be visualized in Figure 16.

Initial idea

The ideal practice to identify webpage content change is to check the Last-Modified field.

A website might have a Last-Modified field in their HTTP header that contains that date,

and the time at which the origin server believes the resource was last modified. This

content changes would signal that a new document is uploaded in the main page and

added to the lists of building permissions. An example of the Last-Modified field is:

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

Problem

However, an empirical study in the set of experiment 50 webpages gave a surprising result

that the Last-Modified field is not always available in the HTTP header of in our

experimental web pages. Because there is no general mechanism of updates, and

notifications, the initial idea cannot be attained in practice.

Solution

A simple workaround solution to this problem can be as follows. The Website Watcher

Module detects changes in a web page’s content by storing a copy the HTML of a

webpage, and then periodically getting the current HTML, and checking it against the

initial HTML. In order to save disk memory, the raw HTML markup will not be stored

directly in the database. The raw content must be first filtered to remove JavaScript

elements, and then the HTML tags are also removed. The filtered HTML markup is then

3 Design and Conception

23

hashed and stored in the database. If the webpage content has recently changed, it will

have a different HTML hash value to its previous hash value.

Trade-off

At first, the initial idea was intended to save computational resources, as the resource

needed to check an HTTP header of a webpage is relatively low. Indeed, the solution

proposed above needs a higher resource than the initial idea. Because it must do the extra

steps to parse the HTML markup and create a hash value. However, it is still acceptable

compared with not having the Website Watcher module. Because parsing and hashing

HTML markup is still cheaper than having to parse HTML code, check up every hyperlink

found in the main page to decide whether they have already existed or not.

Figure 16: Workflow of Website Watcher Module

3.2.3 Hyperlink Collector

Function

The Hyperlink Collector Module is responsible for parsing and extracting hyperlinks from

the Webpage. It reads the messages in the queue sent from the previous module and

3 Design and Conception

24

processes them individually. The message from the previous module contains the name,

ID of the cities need to be crawled.

Solution

Each message received will be processed with the workflow shown in

Figure 17. Firstly, a GET request is sent to the server to retrieve the HTML content of

the webpage. This HTML markup is then searched for <a> tags, which specifies the

hyperlinks in a HTML content. This was done by parsing the HTML to a parse tree using

a Python Module. With this parse tree, all the tags that are <a> can be extracted. The

second step is to canonize the relative links. For example, such a relative URL

Next page -

will be turned into the absolute link:

Next page In

the relative link, the attribute href only point a directory relative to the webpage, where

the hyperlink locates.

After being canonized, the href link is then added with a protocol, and domain name so

that the crawler can download the document later. Because it is straightforward to search

Figure 17: Workflow of the Hyperlink Collector Module

3 Design and Conception

25

a PDF embedded in hyperlinks, but hyperlinks extracted from webpages must be

processed and filtered in numbers of ways before being thrown back into the work pool.

For example, the <a> tags can also contain advertisements links, and navigations links,

which are irrelevant. Filtering out documents that are probably not official announcement

before retrieving it into our database reduces the consumed bandwidth and helps the

crawler to be domain specific. The attributes such as text inside the tag is then compared

with a predefined set of rules. If the text inside the tag satisfies all these rules, it will be

passed to the next step, or else, will be filtered out, and marked as invalid. Next, the MIME

type of the URL will be checked to be PDF. If the MIME type proves to be anything else

than PDF, it will be ignored.

Next, the URL will be checked if they are already stored in the database. This feature

avoids redundancy of URLs. It makes sure that the URL in the database is unique. Only

URL links that fulfill all these conditions are stored in the database. At last, they will be

passed into another queue that serves as the event source to trigger the next module –

Hyperlink Processor.

3.2.4 Hyperlink Processor Module

Function

Hyperlink Processor is the components to download the PDF file. The advantages of

separating the download task from the HTML parsing task in the Hyperlink Collector

Module is that the crawler runs much faster and requires less bandwidth. This also reduces

the time of the session. Therefore, the crawler will be less likely to be blocked from

performing too many requests in short amount time.

Due to the requirements of the “Baukarte” project, the PDF files have to be stored by

reference and downloaded. The project involves the process of text mining that is shown

in the project concept in Figure 1. Therefore, the PDFs file have to be persistently stored

in our database for further analysis. Moreover, the act of only storing PDF by reference

(storing the URL where the file is located at) has a risk as follows. The file hosted at any

particular URL is subject to change. This might lead to unexpected effects. For example,

if the PDF content is migrated to another location, the URL links might eventually go

missing or is changed to something completely irrelevant.

3 Design and Conception

26

3.2.5 Data Storage

In order to make the web scrapers useful, the ability to store and interact with large

amounts of data is incredibly important. There are two main types of data to store:

metadata and actual PDF documents:

Meta data The meta data stored in this project can be divided into two categories: input

for the crawling process, and the output of the crawling process. The input is the list of

URL seeds. The outputs are the history from the crawling process, indexes of documents

we already have in your S3 bucket. The history of each PDF link crawled has to be stored

to make sure that the crawler only downloads the same PDF once. It is practical to keep

the information in a database. The information has to be queryable so that the links which

have not been downloaded or failed to be downloaded can be found later on. The

database must also handle a lot of insert operation from the crawler.

PDF Documents is the official journal found. The PDF documents need to be indexed

in a way that allows them to be queryable.

3.3 Serverless deployment development

The last step in developing a web crawler is to be able to deploy it into the cloud. The

deployment of a serverless application differs a lot from a self-hosted application’s

deployment. It is an interesting object to examine in order to gain more insights about the

deployment process of a serverless application, which lack both academic resources, and

established practical patterns.

Figure 18: Workflow of Hyperlink Processor

3 Design and Conception

27

3.3.1 Purpose

The term application deployment can have a lot of different meanings depending on the

type of the application. In general, it is the process of release the application from the

development environment to the production environment. In case of a serverless

application, deployment means moving the code from a developer’s repository to a

repository managed by the cloud provider. The source code of a serverless application

consists of two components: the business logic that defines the behavior of the

application, and the resource’s configuration code that defines the properties of the

resources used by the applications such as database, message server, user authentication

server, etc.

3.3.2 Goal

This is the main goal to design a simple, and automated integration, and deployment

pattern both the infrastructure and the actual code are deployed. The automated

integration process should support the early merge of code changes into the master

branch. The automated deployment would minimize the manual errors, and reduce the

time needed.

3.3.3 Concept

First, the common repository should be managed by a version control software. The

source code contains both code for the business logic and the resource’s configurations

of the serverless application. In the build, and deployment stage, a continuous integration

server should support the developer team with the ability to build and deploy to a cloud

environment.

3 Design and Conception

28

Developers create an isolated branch to work on a new feature. This branch can be

merged into the develop branch for review. After tested, and reviewed the code be pushed

to master branch, where it will trigger the build, and deployment process. This process is

defined in a configuration file conforming to the requirement of the CI platform.

Two separate deployment pipelines are needed: one to deploy the AWS resource’s

configuration code, and one to deploy business logic’s code. This choice was made based

on the following reasons. First, the configuration files of the cloud resources need to be

stored securely. As in this project, the cloud resource’s configuration file will be kept in

an AWS S3 bucket. This method of remote resource storing is safer than storing locally.

Second, once the project is deployed for the first time, it will come into the state of code

iteration, and redeployment. In short, the infrastructure will not need to be changed as

often as the Lambda code and should not be coupled in the deployment of AWS Lambda

code.

4 Implementation

29

4 Implementation

This chapter describes the implementation based on the proposed architecture in the

previous chapter. Section 4.1 presents the overall view of development environment and

technologies, namely frameworks and libraries. Section 4.2 gives details about the

implementation of the core functions as well as the adopted AWS Services. Section 4.3

4.1 Development environment and Frameworks

Development environment

The Python in this project runs under Python 3.6. The application was developed

simultaneously under both Ubuntu 16.04 LTS, and Windows 10 Operating System.

Within the scope of a bachelor thesis, it is practical to use as many as possible “ready-to-

use” technologies, in order to create a prototype fast and test it at a small scale to validate

the initial architecture proposal. Therefore, the following frameworks and library are

extensively used in the implementation:

BeautifulSoup14 is a library that makes it easy to scrape information from web pages. It

sits on top of an HTML or XML parser, providing Pythonic idioms for iterating,

searching, and modifying the parse tree. The official docs are comprehensive, easy to read

and provided with practical examples. Beautiful Soup comes with Python 2, and Python

3.

Requests15 library is the de facto standard for making HTTP requests in Python. Every

request raised from a web client takes the advantage of Request to communicate with the

server using any one of the HTTP methods i.e., HTPP GET or HTTP POST. It abstracts

the complexities of making requests behind a beautiful, simple API so that the users can

focus on interacting with services and consuming data in the application.

Boto316 is the Amazon Web Services SDK for Python. It enables Python developers to

create, configure, and manage almost all AWS resources from the Python script. Boto3

provides an easy to use, object-oriented API, as well as low-level access to AWS services.

14 https://www.crummy.com/software/BeautifulSoup/bs4/doc/
15 https://2.python-requests.org/en/master/
16 https://boto3.amazonaws.com/v1/documentation/api/latest/index.html?id=docs_gateway

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://2.python-requests.org/en/master/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html?id=docs_gateway

4 Implementation

30

The code example below how to get the lists of all buckets available in the AWS S3 in

three lines of code.

import boto3

sqs = boto3.resource('s3')

bucket = conn.get_bucket('bucket_name')

4.2 Implementation of the core functions

In section 3.2, the main modules of the crawler are explained in term of function. This

architecture needs to be evaluated by the feasibility, and usability. Therefore, the

architecture was built into a prototype as a proof-of-concept with AWS Services. In

addition, a brief introduction about the critical AWS Services adopted in the

implementation are presented, namely AWS Lambda, SQS, CloudWatch and S3, because

they are the key building blocks of the crawler.

One of the requirements for the implementation was the complete usage of cloud

services, which can be traced back to the requirements in section 3.1. The decision was

made to use build the application completely with Amazon Web Services from the

business logic to database. As being one of the most popular cloud providers, Amazon

Web Services offers a cloud ecosystem including compute, storage, databased, developer

tools, and management tools, which can cover the complete application development life

cycle.

4.2.1 Initializer Module

Figure 19 shows the components of the Initializer Module. AWS CloudWatch has the

ability to set up monitoring, which enables the trigger to get triggered every few minutes

or hours. In particular, Lambda functions can be triggered as a cron via AWS

CloudWatch, by setting the frequency of the cron by entering the interval via the cron

expression. The Amazon CloudWatch Event is the agent to schedule automated actions

that are self-triggered periodically. This event will trigger the Lambda function to retrieve

all cities (URLs of official website) stored in the DynamoDB seeds table and put them

into the SQS queue.

4 Implementation

31

Figure 19: Initializer Module implemented with AWS Services

4.2.2 Website Watcher Module

Figure 20 describes how the Website Watcher Module is implemented. A Lambda

function is chained to the SQS of the Initializer Module as a worker. When messages are

pushed into the queue, the queue automatically fires up multiples Lambda Function to

process these messages. Further business logic carried out by Lambda Function includes

retrieving webpage content (HTML) and comparing with the previous hash value stored

in DynamoDB. The webpage that has changed recently will provide a different hash value

to its previous hash value. This will be the factor to decide whether a city (URL) should

be added to the to-be-crawled queue or not. The new hash value is stored in persistent

storage.

Figure 20:Website Watcher Module implemented with AWS Services

4 Implementation

32

AWS DynamoDB is used to store the latest hash value of the webpage along with the

previous hash value. Lastly, the URL of the web page with content changes is sent to the

next SQS queue to be crawled.

4.2.3 Hyperlink Collector Module

SQS queue from the Website Watcher Module acts as an event source that triggered the

Lambda function. AWS Lambda Function executes its code to perform the crawling

process on the pages (URL) it received from the queue. Lambda parses the HTML

content of the web pages and extracts all hyperlinks. Each link has to fulfill a set of rules

to be considered as eligible URL (official announcement). Next, each hyperlink is

classified as new or already existed by querying the DynamoDB table. The links classified

as not already existed will be indexed with a unique identifier and stored in the

DynamoDB table. They will also be sent to AWS SQS Queue as tasks for the next

module.

Figure 21.Hyperlink Collector Module implemented with AWS Services

4.2.4 Hyperlink Processor Module

The last step of the crawling process is performed by the Hyperlink Processor Module.

AWS Lambda Function opens, and reads the message containing the URL to directly

into the S3 buckets with the unique identifier created in the previous module. The file is

then stored in a bucket AWS S3 Amazon Simple Storage. This ensures that each

document will be saved both as referenced in the AWS DynamoDB table, and stored

persistently in S3 bucket with the same identification.

4 Implementation

33

Figure 22: Hyperlink Processor Module implemented with AWS Services

4.2.5 Job Queue

A pattern can easily be noticed in the four modules above is the use of AWS SQS to

trigger AWS Lambda function. This is a newly added feature of AWS Lambda, which is

used to improve the parallelism of the crawler. In June 2018, AWS announced that AWS

SQS is added as an event source of Lambda [12]. The SQS trigger can be added via AWS

Lambda Console as shown in Figure 23. Whenever a new message arrives in the queue,

the queue will automatically trigger Lambda function.

Figure 23: SQS as Lambda's trigger on the left hand-side

Advantages

First, and foremost, this design shows a great potential of serverless application. As AWS

will handle all tasks that have to be implemented manually in Lambda function before.

Traditionally, Lambda function has to poll the messages from the queue, wait for the

4 Implementation

34

messages to arrive, process them, and delete them from the queue. With a queue acting

as the broker between data producer, and worker (the durability of the process is on a

reasonably good level. If the worker dies, SQS will hold onto our data, ensuring that it is

possible to reach to it, whenever the workers are back to full health. The other benefit is

also the scalability without additional configuration. AWS will take the responsibility of

scaling up or down the numbers of Lambda functions adapted to the numbers of

messages in the queue, and the predefined limit [13].

Figure 24: AWS SQS as trigger for Lambda function

The table below shows the list of queues used in our

f. Data Storage

The metadata is organized as a JSON tree and structured in a flattened form. For

Nr Configuration

1

Name seed

Queue type Standard

Publisher putseedinQueue

Consumer WebsiteWatcher

2

Name cityURLqueue

Queue type Standard

Publisher Website Watcher

Consumer Hyperlink Collector

3

Name pdfURLqueue

Queue type Standard

Publisher Hyperlink Collector

Consumer Hyperlink Processor

Table 1: SQS Queue Configuration

4 Implementation

35

The AWS S3 was implemented to hold with three buckets. Bucket

iw_bd_demowebcrawler_lambda stores the AWS Lambda deployment packages. Bucket

aws_bd_demowebcrawler_pdf bucket contains the downloaded PDFs file. Bucket

aws_bd_demowebcrawler_tfstate is used to store the tfstate files, which are the

configuration files for AWS resources.

4.2.6 Logs, logging management and billing.

Logs, and logging management are organized with Amazon Cloud Watch. Cloud Watch

gathers detailed information relating to operations of Lambda functions. It also provides

useful metrics, configurable alarm setting to notify stakeholders whenever failing, and

various filters to quickly search for correct log

The statistics are collected on each run of the crawler. AWS Lambda automatically

monitors Lambda function, reporting metrics through Amazon CloudWatch [14].

Lambda automatically integrates with CloudWatch Logs, and pushes all logs from your

code to a CloudWatch Logs group associated with a Lambda function, which is named

/aws/lambda/<function name> [15].

AWS CloudWatch Dashboard was chosen to visualize these metrics. Each metric

mentioned above is shown on an individual chart. The data for the charts was sent directly

from the logs of functions. The UI of the dashboard can be found in Appendix I. The

dashboard was manually created by choosing the most important metrics of an AWS

Lambda function. This dashboard allows the user to monitor the health of the crawler.

The most important metric is the Error, and Success rate.

AWS using tags to enable the users to categorize AWS Resource and also for AWS billing

reports. Tags were used with each of the web crawler resources to allow reporting using

AWS Console and billing reports

4 Implementation

36

4.2.7 Adopted AWS Services

This section provides a brief introduction about the important AWS Services used in the main

functions, namely AWS Lambda, AWS Simple Queue Service, AWS Simple Storage S3, AWS

DynamoDB, and AWS CloudWatch.

AWS Lambda Function

AWS Lambda17 lets us run the code without provisioning or managing the servers. It lets us

execute the code from few requests to even thousands in a short time, and scales up

automatically as per dem, and. We need to pay as per use and need not pay when the code is

not running.

Figure 25: Simplify architecture of a running Lambda function

Configuration

The developers can set up their own configurations including Runtime Environments, Handler

(name of the handler function), Role (IAM Role), and the Timeout.

17 https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

4 Implementation

37

Figure 26: Configurations of AWS Lambda Function

a. Runtime – Execution Environment

All the developer needs to do is supply the function code in one of the languages that AWS

Lambda support (current Node.js, Java, C#, and Python).

b. Event source

In AWS Lambda, we can run our code response to events, such as changes to data in an Amazon

S3 bucket, Amazon DynamoDB Table. AWS Lambda is also capable of processing messages in

a standard Amazon Simple Queue Service (Amazon SQS) queue. Lambda polls the queue and

invokes the function synchronously with an event that contains queue messages. Lambda reads

the messages in batches and invokes your function once for each batch. When your function

successfully processes a batch, Lambda deletes its messages from the queue. With this

capability, we can use AWS Lambda, and Amazon SQS build our application at a very low cost.

c. AWS Lambda Console

AWS Lambda Console allows developers to write code directly. A sample “Hello World”

function and its handler are also given to demonstrate the programming model of AWS

Lambda. Through the AWS Lambda Console, the Lambda function can also be invoked for

testing, and the result is displayed directly on the console as seen in

Figure 27: Result after invocation of Lambda function

Billing

AWS Lambda is charged based on the number of requests for the function (incl. test invokes

from the console), and the time the code executes. First million requests a month is free.

4 Implementation

38

Afterward, AWS charges $0.0000002 per request for the total number of requests across all

your functions. For every GB-second used AWS charges $0.00001667 18.

4.3.2.2 AWS SQS

AWS SQS19 is the message queuing services provided by AWS that enables asynchronous

communication. AWS SQS follows the producer/consumer paradigm. The producer can be

other AWS Services, which add messages to the queuing services. The consumer subscribes to

the queue can read the message from the queue and process it later.

Configuration

a. Queue type AWS SQS provides two types of queue:

• Standard queue is the default queue type supported by AWS SQS.

• FIFO (First in First out) queue maintains order for delivery of messages. The name of the

queue should have the suffix “.fifo”. It restricts 300 transactions per second and ensures

that messages are delivered exactly once.

b. Default visibility timeout

This parameter is used when the consumer receives the message and processes it so that no

other consumers have that same message. There are two possibilities:

• Once the consumer processes the message successfully, the consumer deletes the message.

• No delete call is been made until the visibility timeout expires, so the message will be

available to receive a call.

c. Message retention period

This parameter is used to retain the message in the queue. After the message retention period

retention has expired, the message will be deleted automatically. By default, the message,

retention period is 4 days and can be extended up to a maximum of 14 days.

Billing

AWS offers Amazon SQS Free Tier for free with 1 million Amazon SQS requests each month.

After that, the pricing for standard queue is $0.40 for 1 Million requests. The pricing for FIFO

queue is $0.05 for 1 Million requests.

4.3.2.3 AWS S3

AWS Simple Storage Services20 (S3) is a highly scalable, and available data object storage, which

allows storing and retrieving all type of data from anywhere on the web. AWS S3 stores data

objects in buckets. A bucket is a logical container used to identify the namespace of data objects.

18 Price by the time of writing
19 https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
20 https://docs.aws.amazon.com/s3/index.html

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/s3/index.html

4 Implementation

39

Folders and subfolders can also be created under the bucket to hold data objects. Every S3 data

object has a unique identifier in form of URL formed by concatenating the followings

components:

http://BUCKET_NAME.s3.amazonaws.com/DATA_OBJECT_KEY

Protocol Bucket name S3 endpoint Object Key

The public can have access to the data object by the URL. Access to each S3 bucket, and object

are granted by, and ACL (Access Control List) which consists a series of up to 100 grants. Each

grant consisting of a grantee, and permissions will control access to specific users or to groups

of users. As per research, AWS S3 is considered as an excellent choice for a large choice of use

cases. It ranges from storage for backups to hosting static websites.

Billing

Billing is calculated based on storage (average), data transfer in, and out, and the number of

requests per month.

Storage - S3 Standard Storage

First 50 TB / Month $0.0245 per GB

Next 450 TB / Month $0.0235 per GB

Over 500 TB / Month $0.0225 per GB

Request – S3 Standard

Data Returned by S3 Select $0.0008 per GB

Data Scanned by S3 Select $0.00225 per GB

PUT, COPY, POST, or LIST Requests $0.0054 per 1,000 requests

GET, SELECT, and all other Requests $0.00043 per 1,000 requests

Data transfer

Data Transfer IN To Amazon S3 From Internet

All data transfer in $0.00 per GB

Data Transfer OUT From Amazon S3 To Internet

Up to 1 GB / Month $0.00 per GB

Table 2: AWS S3 Pricing for region eu-central-1 (Frankfurt) at the time of writing

4.3.2.3 AWS CloudWatch

AWS Cloud Watch21 enables the monitoring from all AWS resources, application, and services

that run on AWS, so that the developer and administrators can see the metrics and logs from

AWS Resources. In order to call metrics, the following parameter must be defined. Cloud

21 https://docs.aws.amazon.com/cloudwatch/index.html

https://docs.aws.amazon.com/cloudwatch/index.html

4 Implementation

40

Watch gathers detailed information corresponding to operations of Lambda functions.

Moreover, various filter to search for specifying logs is provided. Figure [?] shows the graphed

metric for AWS Lambda.

Cloud Watch collects logs of AWS Lambda functions, and categories them into separate groups

corresponding to each function called a log group. A log group consists of multiple log

messages.

CloudWatch Metrics:

a. Namespaces: a container for CloudWatch metrics. Metrics in different namespaces are

isolated from each other so that metrics from different applications are not accidentally

aggregated for computing statistics.

b. Metrics: represents a time-ordered set of data points that are published to CloudWatch. It

can be thought of as a variable that we need to monitor, and the data points are the values

of the variable over time.

c. Dimensions: a name or a value pair that uniquely identifies a metric. You can assign a

maximum of 10 dimensions to a metric. Dimension help you design a structure for your

statistics plan.

d. Statistics: are metric data aggregation over time specified by the user. Aggregation are made

using the namespace, metric name, dimensions, and the data point unit of measure within

the time period you specify.

e. Percentiles: as the name suggests, the percentile indicates the relative standing for a value

in a dataset. It helps you get a better understanding of the distribution of your metric data.

Percentile are used to detect anomalies.

f. Alarms: used to initiate actions on your behalf. An alarm monitors a metric over a specified

interval of time and performs the assigned actions based on the value of the metric relative

to a threshold over time.

AWS CloudWatch Logs

CloudWatch Logs allows users to access, monitor, and store log files from all AWS resources.

It offers near real-time monitoring, and developer can search for specific phrases, values or

patterns. Cloud Watch logs are managed services which can be provisioned with no extra

purchase from within an AWS account.

AWS CloudWatch Events

Cloud Watch Events allows users to consume a near real time stream of events when changes

to their AWS environment takes place. These event changes can subsequently trigger

notifications or other actions.

4 Implementation

41

4.3. CI/CD Pipeline

The expected outcome of this section will be an automated CI/CD pipeline from a local

development environment to AWS. This section is organized as follows, the first subsection

will provide a brief introduction to the tools, and technology used in the DevOps pipeline. The

second subsection focuses on DevOps pipeline for AWS Lambda Functions, which are the

main components of our application.

4.3.1 Frameworks, and development environment.

The main technical requirements from the company are the usage of GitLab as a shared code

repository, which is in already in used, and the usage of Terraform to provision AWS resources.

A brief introduction to the tools used in the thesis is provided below.

PyCharm IDE22 is an integrated development environment, specifically for the Python

language. PyCharm IDE has a lot of plugins supports a lot of languages used in this project

including Python, HashiCorp Configuration Language (HCL) used to write Terraform

Templates, and YAML file used to define GitLab CI Pipeline. Moreover, PyCharm is also fully

integrated with git, ssh and shell console.

GitLab23 is a hosted Git service like GitHub. GitLab provides a stand-alone server that

can be deployed on-premises or in the cloud, and commendably most of the development of

their service product is open source. GitLab in conjunction with Git is the code repository, and

source control management being used at Immowelt AG besides Microsoft Team Foundation

Server (TFS). For this reason, Git/GitLab was undoubtedly chosen in this project considering

our project does not involve with any form of Microsoft’s .NET development environment.

GitLab CI/CD24 is a continuous integration tool built to use with GitLab. The fundamental

concepts for Gitlab’s approach to CI. Every repository has a single pipeline configuration,

declared in a .gitlab-ci.yml file. Every commit to the repo will trigger a run of this pipeline.

GitLab CI/CD organizes pipelines in stages. A stage consists of one or multiple jobs. The jobs

of a stage are executed concurrently. A consecutive stage is only started if all jobs of the previous

stage finished successfully.

Figure 28: GitLab CI/CD pipelines

22 https://www.jetbrains.com/pycharm/
23 https://about.gitlab.com/stages-devops-lifecycle/
24 https://docs.gitlab.com/ee/ci/

https://www.jetbrains.com/pycharm/
https://about.gitlab.com/stages-devops-lifecycle/
https://docs.gitlab.com/ee/ci/

4 Implementation

42

GitLab Runner 25 GitLab CI/CD provides an open source GitLab Runner, an automation

server used to schedule, coordinate, and triggers these tasks. Moreover, GitLab CI/CD also

provides an interactive web application to visualize the deployment process.

Infrastructure as Code IaC is the practice for managing infrastructure by code following the

rise of cloud computing. As it is easy to provision servers, databases, and other infrastructure

with a few buttons click, mistakes can be easily made provision a complex application. IaC

replaces the traditional manual configuration on cloud provider ‘s interface with the practice of

provision and manage IT infrastructure through the use of source code. The configuration files

will be maintained the same as actual code. The AWS – native tool for IaC is CloudFormation,

Google Cloud, and Microsoft Azure also provide their own implementations.

Terraform

Terraform26 is an Infrastructure as Code (IaC) management tool that helps provision cloud

infrastructures in a declarative way. Terraform by HashiCorp is a multivendor solution that is

gaining momentum, this is also the standard at Immowelt for provisioning infrastructure in the

AWS Cloud. Since the infrastructure is handled as code, IaC needs applying DevOps practices

to version infrastructure code, rolled back in case of a problem.

Terraform uses Terraform configuration files called .tf file to describe infrastructure. These .tf

file is written in HCL (HashiCorp Configuration Language), a human-readable syntax. It can

also be stored remotely, which works better in a team environment. Terraform can be used to

deploy on almost all popular cloud platform such as Amazon Web Services, Microsoft Azure,

Google Cloud, Digital Ocean, etc. Terraform can be installed on any machine both inside, and

outside the cloud.

In order to understand how Terraform work, it is worth first to understand how AWS resources

are managed. AWS provides an interface called application programming interface (API). The

developer can control every resource of AWS over the API. AWS API follows the RESTful

paradigms using the HTTPs Protocol. Terraform basically makes an API calls on the user behalf

to AWS.

Figure 29: Terraform API call

25 https://docs.gitlab.com/runner/
26 https://www.terraform.io/

https://docs.gitlab.com/runner/

4 Implementation

43

4.3.2 AWS Resources deployment pipeline

Project structure

Figure 30 shows the structure of the Terraform project. The project contains the configuration

files (.tf files) for AWS resources and a configuration file for the deployment pipeline (.gitlab-

ci.yml). The .tf files define the property of the resource such as AWS SQS, Lambda, IAM

policies, etc. Each type of AWS Resources will be grouped into one .tf file. For examples, four

Lambda functions of the web crawlers will be grouped together in the lambda.tf file. The file

.gitlab-ci.yml describes which tasks should the GitLab CI Server executes. This file is written

follows the convention published by GitLab to ensure compatibility with the GitLab CI/CD

server.

Figure 30: Terraform project repository in GitLab

Version control In this project, Git was adopted to assist the version controlling of the source

code. The code is stored in a remote repository in the GitLab Server.

Deployment Figure 31 shows the workflow of the deployment process. The user made a

change in the source code and commit this change locally to the master branch of the GitLab

Repository. After the local changeset is taken, it then triggers the GitLab Runner deployment

pipeline. The GitLab Runner takes the changeset and executes the predefined pipeline with

.gitlab-ci.yml in a linux environment. The .gitlab-ci.yml contains a set command lines based on

4 Implementation

44

Terraform conventions. First, the terraform plan command is executed to transform the .tf files

into an execution plan. Terraform determines which new resources need to be added or which

resource has to be changed. After the execution plan is created, terraform validate command

will ensure that the syntax in the terraform files is correct. At last, the terraform apply command

will create or update the resources according to the execution plans. Lastly, Terraform updates

the state files in the AWS S3 Bucket.

State file management

After the AWS resources were created, their configurations will be saved in a .tfstate27 file.

Following the best practice, the terraform backend28 is configurated to store the state files of

the resources in an AWS S3 Bucket. AWS S3 allows file versioning, which enables to track any

changes in the configurations. This is also a method to securely store state file than in a local

machine. The state file is a very important file but also very fragile. For example, the state file is

always loaded at the initializing of Terraform to check against any changes in the configuration

file. The lost or unintentional modifications of the states file may result in the inconsistency

between the state managed by Terraform, and the actual state of the resources in the cloud,

which may need a lot of effort to be fixed.

Figure 31: Deployment pipeline for AWS Infrastructure

4.3.3.2 AWS Lambda deployment pipeline

The practices described in below is applicable to all four Lambda functions of the web crawler.

Each of the Lambda function will have a

27 https://www.terraform.io/docs/state/
28 https://www.terraform.io/docs/backends/

https://www.terraform.io/docs/state/
https://www.terraform.io/docs/backends/

4 Implementation

45

Source control

There is a misconception that AWS Lambda is all about a function. However, the additional

components along with the code are also required for local development, debugging, and testing.

First, unit tests and integration tests are still required to validate the logic and prevent regression.

Second, there is a need to call 3rd party library. For example, in order to do a secure HTTP

GET requests the Python library requests should be used, rather than being coded from scratch.

Third, all AWS Lambda functions require a source event, and a result end. IAM role or IAM

policies have to be attached to the Lambda function so that Lambda function can connect to

these resources.

Managing all the modules, environment variables, testing suite, and

credentials for other AWS resources can be challenging. A good,

and well-defined project structure will lay a foundation for

managing these dependencies. With a new project, there are many

ways to organize code. The following structure shown in Error!

Reference source not found. has worked very well in this project.

All the code is placed into the src/* directory, namely the main.py

script that contains code of interest. The file .gitignore specifies the

intentionally untracked files, which shouldn’t be commit to the

remote master branch. The file .gitlab-ci.yml contains the

configuration for the AWS Lambda deployment pipeline. In

requirements.txt, the dependencies required in the main.py script are listed.

Deployment

The deployment process can be described as follows. First, and foremost, the user makes a

change in the source code and commits this change to his local Git repository. After the code

is reviewed and tested, it can be pushed into the master branch in the remote GitLab repository.

The changes in the master branch in GitLab trigger the GitLab CI/CD pipeline, which is

defined by the .gitlab-ci.yml file in the project. GitLab Runner will execute the tasks defined in

the .gitlab-ci.yml which follows the conventions defined in the AWS documentation for

deploying Python29. The deployment consists of three steps in this case package, build, and

deploy. Package command will install the required modules, and dependencies written in

requirements.txt. Build command means to zip the installed modules together with the Python

source code to create a deployment package. The deployment package is then uploaded to a

predefined AWS S3 Bucket. Package command can be done with pip, a command line tool to

install Python modules. Build, and deploy are done with AWS Cli, a native AWS command line

tool.

29 https://docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html

Figure 32: Project structure of
AWS Lambda function

4 Implementation

46

Problem

The biggest problem by deploying an AWS Lambda function with Terraform and AWS S3

Bucket as code repository is that AWS Lambda function managed by Terraform cannot detect

changes in the AWS S3 bucket. Therefore, it will not automatically update the code after the

source code in AWS S3 has been changed. By several experiments, a workaround for this

problem has been discovered. Namely, a trigger is defined in the .gitlab-ci.yml to automatically

redeploy the AWS resource deployment pipeline.

First, an extra attribute must be defined in the Terraform configuration for AWS Lambda

function, namely source code hash. In this case, the source code hash is created form the last

modified timestamp of the AWS S3 object. After the new code has been pushed to AWS S3

bucket, the timestamp will be changed, and will not be similar to the previous hash value. The

next step is to redeploy the AWS resources.

This is a dummy step because there is actually no change to the AWS resources. However, it is

needed to invoke Terraform to apply the changesets from AWS S3 to AWS Lambda functions.

Because, the terraform plan command checks the current configuration in the state file with the

execution plan. It allows checking of current the source code hash against the previous one. If

any dis-integrity is detected between the two values, Terraform will explicitly command AWS

Lambda function to apply the changeset from AWS S3.

Figure 33: Deployment pipeline - AWS Lambda function

Monitoring of the deployment pipeline

Monitoring of the deployment pipeline can be easily done with the interactive visual interface

of GitLab. If all deployment tasks in the .gitlab-ci.yml were successfully executed, the

deployment pipeline is marked as green as success. In case of unsuccessful task, the pipeline

automatically rolls back to its latest stable version.

4 Implementation

47

Figure 34: Examples GitLab CI Dashboard

5. Conclusion

48

5. Conclusion

5.1 Evaluation

5.1.1 Web crawler

Coverage To ensure the crawler work, the outputs of the web crawlers were examined.

The data retrieved were manually examined to see the coverage of the web crawler. The

coverage is an indication to decide whether the web crawler is able to retrieve all the

documents on the webpages. After the examinations of the S3 object storage, and the

DynamoDB tables showed that the crawler has 100% coverage over the experiment 50

websites.

Duplication Manual examination was performed to ensure that there are no duplications

existing in the database after each re-run of the crawler. The crawler was able to

successfully identify the existing PDF documents.

Hyperlink classification Despite few errors, it is confident to confirm that the crawler

is largely be able to identify the hyperlinks of official journals. It delivered an acceptable

number of mistakes in classifying hyperlinks, which can be fixed manually or automatically

in the text processing step of the “Baukarte” project . This problem is largely based on

the fact that there is no standard in naming hyperlinks. The hard code solution can only

cover a certain case.

Statistic The goal of this thesis is the design, and implementation of a distributed web

crawler. It implements a prototypical web crawler which works as expected and leads to

meaningful results. The resulting experiment statistics is shown in the following table.

Total numbers of seeds/city 50

Total numbers of PDF downloaded 4140

Total cost per run $ 0,45

Tabelle 1: Web crawler's statistic

5. Conclusion

49

Target-Actual comparison

This prototypical implementation should be considered as a starting point for further

implementations. In order to determine the functionality of the crawler, a simple

comparison between the initial requirements, and the actual implementation was made,

as shown in the following table.

 Target Actual

The application must be deployed, and run completely on the cloud

environment

x x

Automatic deployment pipeline x

The crawler must behave politely, and following the robot.txt rules x

The result of the crawling process must be according the use case:

- Unstructured Data must be stored in the S3 object store

- Metadata, logging data must be stored in a relational

database

x x

x x

The crawler should be designed, and implemented generically in

term of the monitoring of crawling jobs

x x

The interface for monitoring crawling jobs has the following

specification:

- Enables the monitoring following metrics: the number of

successful, deferred, and failed jobs. Deferred jobs are jobs

that have a temporary error and needs to be relaunched.

x

- Allows users to keep track of the crawling history: last

crawling history, crawling schedule plan.

x

- References to the cost of the crawler history. x x

The programming language of choice should be Python.

Furthermore, the crawler should be easily written, and debugged

locally.

x x

Table 3: Comparison between target, and actual features

Result

Figure 35 shows the folder structure of the S3 Bucket storing PDF files. Each folder has

a key that is a combination between the city name and the ID of the city in the

5. Conclusion

50

DynamoDB. It allows the bucket to easily be searched via query and is also convenient

for manual search, as city names are human-readable than a series of random numbers.

Figure 35: Screenshot - PDF folders stored in S3 Bucket

Figure 36 presents a closer look to Berlin’s folder contents, which contains the official

journals identified with a unique ID.

Figure 36: Screenshot - Content of Berlin's folder

With the same ID, further information about the PDF files can be retrieved from

DynamoDB table as shown in Figure 37.

5. Conclusion

51

Figure 37: Json structure - PDF metadata

Limitations

Due to the limited time of the thesis, only a part of the crawler scheduling was done, in

term of self-triggered crawling process once a week. The monitoring of the dashboard

was also partially done in term of monitoring the health of AWS Lambda functions via a

customized AWS CloudWatch dashboard which can be seen in the Appendix K.

A visualized crawling history, and errors couldn’t be implemented due to limited time and

lack of log aggregation functionality in AWS CloudWatch. Lastly, the technical

implementation of the prototype application is lack of detailed database design, which

might affect the efficiency of DynamoDB querying time.

Future improvement

Considering the current state of the thesis some improvements, and features could be

added in the future to further enhance the coverage web crawler. First, the sources of

official journal can be expanded, a lot of municipal council’s websites allow the users to

subscribe to RSS feed to receive newly released official journals per Email. Second, a

large-scale crawling framework can be implemented to cover all of cities in German,

which may require change in the requirement of the programming language. Because most

the powerful framework are written mainly in Java, such as Apache Storm30, Apache

Nutch31, Heritrix32.

A solution for the visualization of crawling schedule, history and tasks would be to use

an AWS ElasticSearch cluster, and pipe the CloudWatch logs into its for processing. Then,

the Kibana interface can be used to quickly look through the logs and do basic log

analytics or log aggregations. Logs can also be customized with special keywords such as

“failed”, “success”, or “delayed”, which will add some meaning information to the log.

5.1.2 Deployment pipeline

30 https://storm.apache.org/
31 https://nutch.apache.org/
32 https://webarchive.jira.com/wiki/spaces/Heritrix

5. Conclusion

52

The implemented deployment pipeline fulfils the concept presented in section 3.3.3. The

Package, Build, and Deploy are run automatically on commit. In other words, the pipeline

is very user-friendly, as it can be started with a button click. The deployment is fully

scripted with Terraform. CI, and CD pipelines are scripted in combination with GitLab

CI. It also complies with the technology requirements at the company such as Terraform

as IaC tool, and GitLab CI as CI/CD tool. The execution time of the deployment pipeline

for Lambda function is estimated to be 3 minutes, and for the AWS Resources maximum

2 minutes. The execution time can vary, because the GitLab Community Runner is shared

between a lot of free users. When the Runner is in high demand, the deployment pipeline

might suffer from delay. Running a self-managed GitLab Runner might solve this delay

problem. However, it is still very attractive considering the cost factor, since the execution

of the deployment pipeline on GitLab Community Runner is free of charge.

Future improvement

The automated testing was not integrated into the deployment pipeline. This limitation

can be resolved by studies of open source testing frameworks. The possible approach can

be using a Python Framework called Moto 33 to create mock AWS Services and not

directly on actual AWS Services.

Technology stack evaluation

Terraform is a not yet mature technologies and is still under development. Its latest

version is 0.12, which means there are still plenty of changes to come in 1.0 version. The

user should think carefully before getting started to rely on Terraform for provisioning

cloud infrastructure. Hidden problem such as updating AWS Lambda function can be

quite cumbersome to work with.

5.2 Conclusion

As proposed, a web crawler for journal officials was built, and successfully crawled with

the experimental set of websites. The web crawler was implemented with a Serverless

architecture using AWS Services, and aided by messages queue to increase the efficiency.

In addition, the aim to implement an automated deployment pipeline was also achieved.

The artifact of this thesis includes the source code of the crawler, deployment pipeline

configuration, and AWS resources’ configurations.

The most interesting knowledge gained over the course of the designing phase is the

understanding of the complexity in developing a distributed system. This gave me a good

chance to gain hand-on experiences with serverless architecture, which is very different

33 https://github.com/spulec/moto

https://github.com/spulec/moto

5. Conclusion

53

from the traditional monolith architecture. Especially, the monitoring of serverless

application has lack of transparency and specialized monitoring tools, which makes it

notoriously hard to debug errors.

It is also worth to emphasize that with the adopting of Serverless Architecture, developers

will have to be involved in DevOps processes that requires additions skills such as IaC

tools, and GitLab CI configurations.

During the work on this thesis, the main challenge was to be able to learn a lot of different

skillsets, and technologies. This required a huge investment in time to be able to work

productive with the completely new tools, because I didn’t have any experiences with

them beforehand. Through this thesis, I was able to extend my knowledge about not only

application but also popular topics in cloud computing such as Infrastructure as Code and

DevOps. This couldn’t be achieved without the support of the Immowelt Big Data’s

Team. In conclusion, it was my pleasure to complete my thesis in a very interesting and

practice-oriented way.

 Bibliography

54

Bibliography

[1] "Immowelt AG," [Online]. Available:

https://www.immowelt.de/immoweltag/wir/index. [Accessed 25 05 2019].

[2] "Axel Springer SE," 12 02 2015. [Online]. Available:

https://www.axelspringer.com/de/presseinformationen/immowelt-und-

immonet-schliessen-sich-zusammen. [Accessed 25 05 2019].

[3] Nunamaker Jr, J. F.; Chen, M,; Purdin T. D. , "Systems development in

information system research," Journal of Management Information Systems, no. 7(3),

pp. 89-106, 1990.

[4] Udapure, T.; Kale. R.; Dharmik, R, „Study of Web Crawler and its Different

Types,“ IOSR Journal of Computer Engineering, Bd. 16, p. 4, 2014.

[5] "Gartner Identifies the Top 10 Trends Impacting Infrastructure and Operations

for 2019," 04 12 2018. [Online]. Available:

https://www.gartner.com/en/newsroom/press-releases/2018-12-04-gartner-

identifies-the-top-10-trends-impacting-infras. [Accessed 28 05 2019].

[6] van Eyk, E.; Iosup, A.; Seif, S. and Thömmes, M., „The SPEC Group's

Research Vision on FaaS and Serverless Architectures,“ in Workshop on Serverless

Computing, Las Vegas, NV, USA, 2017.

[7] Stigler, M., Beginning Serverless Computing: Developing with Amazon Web

Services, Microsoft Azure, and Google Cloud, Apress Berkely, 2017.

[8] Roberts, M., „Serverless Architectures,“ 22 05 2018. [Online]. Available:

https://martinfowler.com/articles/serverless.html. [Zugriff am 29 05 2019].

[9] Chapin, J.; Roberts, M., What is Serverless?, O'Reilly Media, Inc., 2017.

[10] A. W. S. Inc., „Amazon Web Services - AWS Well-Architected Lens-Serverless

Application,“ 11 2018. [Online]. Available:

https://d1.awsstatic.com/whitepapers/architecture/AWS-Serverless-

Applications-Lens.pdf. [Zugriff am 31 05 2019].

[11] Burns, B., „Designing Distributed System,“ O'Reilly, Inc., 2018, p. 109.

[12] Hunt, R., „AWS Lambda Adds Amazon Simple Queue Service to Supported

Event Sources,“ 28 06 2018. [Online]. Available:

https://aws.amazon.com/blogs/aws/aws-lambda-adds-amazon-simple-queue-

service-to-supported-event-sources/. [Zugriff am 05 2019].

 Bibliography

55

[13] Amazon Web Services, Inc., „Understanding Scaling Behavior,“ [Online].

Available: https://docs.aws.amazon.com/lambda/latest/dg/scaling.html.

[Zugriff am 06 2019].

[14] „Using Lambda CloudWatch,“ AWS, [Online]. Available:

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html.

[Zugriff am 31 05 2019].

[15] "Accessing Amazon CloudWatch Logs for AWS Lambda," AWS , [Online].

Available: https://docs.aws.amazon.com/lambda/latest/dg/monitoring-

functions-logs.html. [Accessed 31 05 2019].

[16] Eichmann, D., "The RBSE spider: balancing effective serach against web load,"

in Proceeding of the first World Wide Web Conference, Geneva, Switzerland, 1994.

[17] IDC, "“IDC FutureScape: Worldwide IT Industry 2017 Predictions”,IDC

#US41883016. MA:ID,2016".

[18] Sewak, M.; Singh; S., "Winning in the era of Serverless Computing and

Function as a Service," in 2018 3rd Conference for Convergence in Technology, Pune,

India, 2018.

[19] I. Amazon Web Services, „Getting Metrics from Amazon CloudWatch,“

[Online]. Available:

https://boto3.amazon.aws.com/v1/documentation/api/latest/guide/cw-

example-metrics.html. [Zugriff am 03 26 2019].

[20] I. Amazon Web Services, „AWS Lambda Deployment Package in Python,“

[Online]. Available: https://docs.aws.amazon.com/lambda/latest/dg/lambda-

python-how-to-create-deployment-package.html. [Zugriff am 25 05 2019].

[21] I. Amazon Web Services, „How do I build an AWS Lambda deployment

package for Python?,“ [Online]. Available:

https://aws.amazon.com/premiumsupport/knowledge-center/build-python-

lambda-deployment-package/. [Zugriff am 25 05 2019].

[22] A. W. S. Inc., „Serverless Architecture with AWS Lambda“.

[23] Munns, C., „Serverless architecture patterns and best practices,“ 2017. [Online].

Available: https://www.youtube.com/watch?v=_mB1JVlhScs. [Zugriff am 27

05 2019].

[24] Pant, G.; Srinivasan, P.; Menczer, F., „Crawling the Web,“ in Web Dynamics,

Berlin, Heidelberg; s.l., Springer Berlin Heidelberg, 2004, p. 4.

 Appendix

56

 Appendix

Appendix A Architecture of the “Baukarte” Project

 Source: Maxim Fridental (Immowelt AG)

Appendix B Official Journal Example

Appendix C “Baukarte” project

 Source: Linda Hegewald

Appendix D Initializer Module source code

Appendix E Python source code - Website Watcher Module

Appendix F Python source code - Hyperlink Collector Module

Appendix G Python source code - Hyperlink Processor Module

Appendix H AWS Resources configuration

Appendix I Source code - .gitlab.yml for deploying lambda function

Appendix K Source code - .gitlab-ci.yml file for deploy AWS resources

 Appendix

57

Appendix A: “Baukarte Project Architecture”

 Appendix

58

Appendix B: Official Journal Example

 Appendix

59

Appendix C: “Baukarte” Project

 Appendix

60

Appendix D: Initializer Module

import boto3 1
 2
session = boto3.Session(region_name='xxxxx’, 3
 aws_access_key_id='xxxxx’, 4
 aws_secret_access_key='xxxxx’) 5
 6
class DynamoDBUtils: 7
 def __init__(self,tableName): 8
 self.tableName= tableName 9
 self.conn = session.resource('dynamodb') 10
 self.table = self.conn.Table(self.tableName) 11
 12
 def getallItemsID(self): 13
 res = self.table.scan() 14
 id_list = [item['ID'] for item in res['Items']] 15
 return id_list 16
 17
 def getallItemsID, andURL(self): 18
 res = self.table.scan() 19
 id_list = [(item['ID'],item['url'],item['name']) for item in res['Items']] 20
 return id_list 21
 22
def send_message_to_queue (id, url,name): 23
 session.client('sqs').send_message(24
 QueueUrl = "https://sqs.eu-central 25
1.amazonaws.com/419206837402/seeds_v1", 26
 MessageBody=str(url), 27
 MessageAttributes={ 28
 'ID':{ 29
 'DataType':'String', 30
 'StringValue': str(id) 31
 }, 32
 'Name': { 33
 'DataType': 'String', 34
 'StringValue': str(name) 35
 } 36
 } 37
) 38
 39
def main(event,context): # Lambda Handler 40
 # Create endpoint to DynamoDB Table 41
 utils = DynamoDBUtils('seeds') 42
 id_list = utils.getallItemsID, andURL() 43
 44
 for id,url,name in id_list: 45
 send_message_to_queue(id,url,name) 46

 Appendix

61

Appendix E: Website Watcher Module

import hashlib 1
import boto3 2
from bs4 import BeautifulSoup as bs 3
import requests 4
from datetime import datetime 5
 6
session = boto3.Session(region_name='xxxxx’, 7
 aws_access_key_id='xxxxx’, 8
 aws_secret_access_key='xxxxx’ 9
 10
class websiteHasher: 11
 def __init__(self,url_id,url_to_hash,name): 12
 self.url_id = url_id 13
 self.url_to_hash = url_to_hash 14
 self.city_name= name 15
 16
 def generateHash(self): 17
 try: 18
 cleanedHTML = HTMLSelector(requests.get(self.url_to_hash).text).selectText() 19
 return hashlib.sha224(cleanedHTML).hexdigest() 20
 except requests.exceptions.ConnectionError as e: 21
 return None 22
 23
 def getLastHash(self): 24
 conn = session.resource('dynamodb') 25
 table = conn.Table('seeds') 26
 print(self.url_id) 27
 res = table.get_item(28
 Key={ 29
 'ID': str(self.url_id) 30
 } 31
) 32
 return res['Item']['lastHashValue'] 33
 34
 def updateHash(self,new_hash_value): 35
 conn = session.resource('dynamodb') 36
 table = conn.Table('seeds') 37
 table.update_item(38
 Key={ 39
 'ID': str(self.url_id) 40
 }, 41
 UpdateExpression="SET lastHashValue = :var1, lastModified= :var2", 42
 ExpressionAttributeValues={ 43
 ':var1': new_hash_value, 44
 ':var2': str(datetime.now().date()) 45
 } 46
) 47
 48
 def compareHash(self): 49
 lastHashValue = self.getLastHash() 50
 currentHashValue = self.generateHash() 51

 Appendix

62

 if lastHashValue != None: 52
 if currentHashValue != lastHashValue: 53
 self.updateHash(currentHashValue) 54
 self.send_message_to_queue() 55
 56
def send_message_to_queue (self): 57
 session.client('sqs').send_message(58
 QueueUrl = 'https://sqs.eu-central-59
1.amazonaws.com/419206837402/cityURLqueue_v1', 60
 MessageBody=str(self.url_to_hash), 61
 MessageAttributes={ 62
 'parent_URL_ID':{ 63
 'DataType':'String', 64
 'StringValue': str(self.url_id) 65
 }, 66
 'Name': { 67
 'DataType': 'String', 68
 'StringValue': str(self.city_name) 69
 }, 70
 } 71
) 72
 73
 74
class HTMLSelector: 75
 def __init__(self,html): 76
 self.html = html 77
 78
 ''''Select only the javascript, and styles in the html document''' 79
 def selectJavascript(self): 80
 soup = bs(self.html,features='html.parser') 81
 return [x.extract() for x in soup.findAll(['script','style'])] 82
 83
 def selectText(self): 84
 soup = bs(self.html,features='html.parser') 85
 for x in soup.findAll(['script','style']): 86
 x.decompose() 87
 text = soup.get_text() 88
 # break into lines, and remove leading, and trailing space on each 89
 lines = (line.strip() for line in text.splitlines()) 90
 # break multi-headlines into a line each 91
 chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) 92
 # drop blank lines 93
 text = '\n'.join(chunk for chunk in chunks if chunk) 94
 # encode text 95
 return text.encode('utf-8') 96
 97
 98
def lambda_handler(event, context): 99
 for record in event['Records']: 100

 Appendix

63

 url = str(record['body']) 101
 payload= record['messageAttributes'] 102
 id= payload['ID']['stringValue'] 103
 name= payload['Name']['stringValue'] 104
 hasher = websiteHasher(id,url,name) 105
 hasher.compareHash() 106

Appendix F

64

Appendix F: Hyperlink Collector Module

from bs4 import BeautifulSoup 1
import requests 2
import hashlib 3
from urllib.parse import urljoin 4
import boto3 5
from boto3.dynamodb.conditions import Key 6
from datetime import datetime 7
from botocore.exceptions import ValidationError 8
from uuid import uuid3, NAMESPACE_URL 9
 10
#entrypoint to AWS 11
session = boto3.session.Session(region_name='eu-central-1', 12
 aws_access_key_id=’xxxxxx', 13
 aws_secret_access_key=’xxxxxx') 14
 15
class Hyperlink_Collector: 16
 def __init__(self,parent_url,parent_url_id,city_name): 17
 self.db = session.resource('dynamodb') 18
 self.sqs = session.client('sqs') 19
 self. parent_url_id= parent_url_id 20
 self.parent_url = parent_url 21
 self.city_name=city_name 22
 23
 def getPage(self): 24
 try: 25
 s = requests.Session() 26
 req = s.get(self.parent_url) 27
 return BeautifulSoup(req.text, features='html.parser') 28
 except requests.exceptions.RequestException: 29
 return None 30
 31
 def isAbsoluteLink(self, link): 32
 if str(link).startswith("http://") or str(link).startswith("https://"): 33
 return True 34
 return False 35
 36
 def resolveRelativeURL(self,parent_url,url): 37
 return urljoin(parent_url,url) 38
 39
 def create_uuid (self,url): 40
 parent_url_enc = self.parent_url.encode('utf-8') 41
 url_enc = url.encode('utf-8') 42
 hashtring = parent_url_enc + url_enc 43
 url_id = hashlib.md5(hashtring).hexdigest() 44
 return url_id 45
 46
 def create_uuid3(self,url): 47

Appendix F

65

 uuid= uuid3(NAMESPACE_URL, url) 48
 return str(uuid) 49
 50
 def insert_hyperlink(self,url,link_text,url_id): 51
 self.db.Table('urlsList').put_item(52
 Item= { 53
 "downloaded": False, 54
 "downloaded_on": "None", 55
 "full_url": str(url), 56
 "parent_url":str(self.parent_url), 57
 "link_text": str(link_text), 58
 "valid": True, 59
 "visited": False, 60
 "visited_on": "None", 61
 "downloaded_tries_number":0, 62
 "uuid": str(url_id) 63
 } 64
) 65
 66
 def mark_error (self): 67
 self.db.Table('seeds').update_item(68
 Key={ 69
 'ID': self.parent_url_id, 70
 }, 71
 UpdateExpression="SET valid=:var1, history=:var2", 72
 ExpressionAttributeValues={ 73
 ':var1': False, 74
 ':var2': str(datetime.utcnow().isoformat())+': '+' unable to get page' 75
 }, 76
) 77
 print('unable to get page:' + self.parent_url) 78
 79
 def send_message_to_queue(self, url, url_id): 80
 self.sqs.send_message(81
 QueueUrl="https://sqs.eu-central-82
1.amazonaws.com/419206837402/pdfURLqueue_v1", 83
 MessageBody=str(url), 84
 MessageAttributes={ 85
 'ID': { 86
 'StringValue': url_id, 87
 'DataType': 'String' 88
 }, 89
 'parent_URL_ID':{ 90
 'StringValue': self.parent_url_id, 91
 'DataType': 'String' 92
 }, 93
 'parent_URL':{ 94
 'StringValue': self.parent_url, 95
 'DataType': 'String' 96

Appendix F

66

 }, 97
 'cityName': { 98
 'StringValue': self.city_name, 99
 'DataType': 'String' 100
 } 101
 } 102
) 103
 print(str(url)+':is added to queue') 104
 105
 # CHECK IF URL ALREADY EXISTS IN TABLE 106
 def isURLDupilcate(self, url): 107
 table= self.db.Table('urlsList') 108
 res = table.query(109
 KeyConditionExpression=Key('parent_url').eq(str(self.parent_url)) & 110
Key('full_url').eq(str(url)) 111
) 112
 return True if len(res['Items'])!=0 else False 113
 114
 # CHECK IF URL POINTS TO PDF FILE 115
 def is_PDFFile(self,url): 116
 try: 117
 h = requests.head(url, allow_redirects=True) 118
 header = h.headers 119
 content_type = header.get('content-type') 120
 if ('pdf' in content_type) or ('PDF' in content_type): 121
 return True 122
 except requests.exceptions.RequestException: 123
 return False 124
 125
 # SAVE CRAWLING HISTORY 126
 def mark_last_crawled(self): 127
 self.db.Table('seeds').update_item(128
 Key={ 129
 'ID': self.parent_url_id, 130
 }, 131
 UpdateExpression="SET #st =:var1", 132
 ExpressionAttributeValues={ 133
 ':var1': str(datetime.utcnow().isoformat()) 134
 }, 135
 ExpressionAttributeNames= { 136
 '#st':'last_crawled' 137
 } 138
) 139
 140
 def collect(self): 141
 """ 142
 Searches a given website for all links related to Amtsblatt, and records all pages found 143
 """ 144
 soup = self.getPage() 145

Appendix F

67

 if soup is not None: 146
 for link in soup.findAll('a'): 147
 text = str(link.getText().strip()) 148
 href = str(link.get('href')) 149
 150
 if self.isAbsoluteLink(href) is not True: 151
 href = self.resolveRelativeURL(self.parent_url,href) 152
 153
 if self.is_PDFFile(href) : 154
 if self.isURLDupilcate(href) is False : 155
 print(href) 156
 doc_id= self.create_uuid3(href) 157
 self.insert_hyperlink(href, text,doc_id) 158
 self.send_message_to_queue(href,doc_id) 159
 self.mark_last_crawled() 160
 161
 162
def main(event,context): 163
 print(event) 164
 for record in event['Records']: 165
 url = str(record['body']) 166
 payload = record['messageAttributes'] 167
 cityURL_id = payload['parent_URL_ID']['stringValue'] 168
 city_name = payload['Name']['stringValue'] 169
 collector = Hyperlink_Collector(url,cityURL_id,city_name) 170
 result= collector.collect() 171
 if result is False: 172
 pass173

Appendix G

68

Appendix G: Hyperlink Processor Module

import requests 1
from datetime import datetime 2
from boto3.dynamodb.conditions import Attr 3
 4
import boto3 5
 6
session = boto3.session.Session(region_name='eu-central-1', 7
 aws_access_key_id='xxxxxx', 8
 aws_secret_access_key='xxxxxx' 9
) 10
 11
class Hyperlink_Processor: 12
 def __init__(self,id,url,parent_url_id,parent_url,city_name): 13
 self.db=session.resource('dynamodb') 14
 self.s3=session.resource('s3') 15
 self.id= id 16
 self.parent_url_id= parent_url_id 17
 self.url=url 18
 self.parent_url=parent_url 19
 self.city_name=city_name 20
 21
 def get_pdf(self): 22
 try: 23
 req = requests.get(self.url,stream =True) 24
 return req.content 25
 except Exception as e: 26
 return e 27
 28
 def put_object (self,content): 29
 try: 30
 object= self.s3.Object('iw-bd-demowebcrawler-31
pdf',str(self.city_name)+'+'+str(self.parent_url_id)+'/'+str(self.id)+'.pdf') 32
 res= object.put(Body=content) 33
 print(res) 34
 self.mark_downloaded() 35
 except Exception as e: 36
 return e 37
 38
 def mark_visited(self): 39
 self.db.Table('urlsList').update_item(40
 Key={ 41
 'parent_url': str(self.parent_url), 42
 'full_url': str(self.url) 43
 }, 44
 UpdateExpression="SET visited=:var1, visited_on=:var2", 45
 ExpressionAttributeValues={ 46
 ':var1': True, 47

Appendix G

69

 ':var2':str(datetime.utcnow().isoformat()) 48
 } 49
) 50
 51
 def mark_downloaded(self): 52
 print(datetime.utcnow().isoformat()) 53
 self.db.Table('urlsList').update_item(54
 Key={ 55
 'parent_url': self.parent_url, 56
 'full_url': self.url 57
 }, 58
 UpdateExpression="SET downloaded=:var1, downloaded_on=:var2", 59
 ExpressionAttributeValues={ 60
 ':var1': True, 61
 ':var2': str(datetime.utcnow().isoformat()) 62
 }, 63
) 64
 65
 def visit(self): 66
 self.mark_visited() 67
 content = self.get_pdf() 68
 self.put_object(content) 69
 70
def main(event,context): 71
 print(str(datetime.utcnow().isoformat())) 72
 for record in event['Records']: 73
 url = str(record['body']) 74
 payload = record['messageAttributes'] 75
 parent_id= payload['parent_URL_ID']['stringValue'] 76
 parent_url = payload['parent_URL']['stringValue'] 77
 city_name= payload['cityName']['stringValue'] 78
 id= payload['ID']['stringValue'] 79
 processor = Hyperlink_Processor(id,url,parent_id,parent_url,city_name) 80
 processor.visit() 81

Appendix G

70

Appendix G: AWS resources configuration files

iam.tf

resource "aws_iam_role" "example_lambda" { 1
 assume_role_policy = <<EOF 2
{ 3
 "Version": "2012-10-17", 4
 "Statement": [5
 { 6
 "Effect": "Allow", 7
 "Principal": { 8
 "Service": "lambda.amazonaws.com" 9
 }, 10
 "Action": "sts:AssumeRole" 11
 } 12
] 13
} 14
EOF 15
} 16
 17
resource "aws_iam_role_policy_attachment" "example_lambda" { 18
 policy_arn = "${aws_iam_policy.example_lambda.arn}" 19
 role = "${aws_iam_role.example_lambda.name}" 20
} 21
 22
resource "aws_iam_policy" "example_lambda" { 23
 policy = "${data.aws_iam_policy_document.example_lambda.json}" 24
} 25
 26
data "aws_iam_policy_document" "example_lambda" { 27
 statement { 28
 sid = "AllowSQSPermissions" 29
 effect = "Allow" 30
 resources = ["arn:aws:sqs:*"] 31
 32
 actions = [33
 "sqs:ChangeMessageVisibility", 34
 "sqs:DeleteMessage", 35
 "sqs:GetQueueAttributes", 36
 "sqs:ReceiveMessage", 37
] 38
 } 39
 40
 statement { 41
 sid = "AllowInvokingLambdas" 42
 effect = "Allow" 43
 resources = ["arn:aws:lambda:eu-central-1:*:function:*"] 44
 actions = ["lambda:InvokeFunction"] 45
 } 46

Appendix G

71

 47
 statement { 48
 sid = "AllowCreatingLogGroups" 49
 effect = "Allow" 50
 resources = ["arn:aws:logs:eu-central-1:*:*"] 51
 actions = ["logs:CreateLogGroup"] 52
 } 53
 statement { 54
 sid = "AllowWritingLogs" 55
 effect = "Allow" 56
 resources = ["arn:aws:logs:eu-central-1:*:log-group:/aws/lambda/*:*"] 57
 58
 actions = [59
 "logs:CreateLogStream", 60
 "logs:PutLogEvents", 61
] 62
 } 63
} 64

main.tf

provider "aws" { 1
 region = "eu-central-1" 2
 access_key = "${var.aws_access_key}" 3
 secret_key = "${var.aws_secret_key}" 4
} 5
 6
BUCKET FOR TERRAFORM STATE 7
resource "aws_s3_bucket" "iw-bd-demowebcrawler-pdf" { 8
 bucket = "iw-bd-demowebcrawler-pdf" 9
 acl = "private" 10
 tags = { 11
 Application="iw-bd-demowebcrawler" 12
 } 13
} 14
 15
main bucket for Lambda function 16
resource "aws_s3_bucket" "iw-bd-demowebcrawler-lambda" { 17
 bucket = "iw-bd-demowebcrawler-lambda" 18
 acl = "private" 19
 tags = { 20
 Application="iw-bd-demowebcrawler" 21
 } 22
} 23
 24
DEFINE THE REMOTE REPOSITORY FOR THE .TFSTATE FILE 25
terraform { 26
 backend "s3" { 27
 bucket = "iw-bd-demowebcrawler-state" 28
 key = "tfstate/terraform.tfstate.json" 29

Appendix G

72

 region = "eu-central-1" 30
 } 31
} 32

lambda.tf

data "aws_s3_bucket_object" "putSeedInQueue_sourcehash" { 1
 bucket = "iw-bd-demowebcrawler-lambda" 2
 key = "putSeedInQueue/putSeedInQueue.zip" 3
} 4
 5
resource "aws_lambda_function" "putSeedInQueue" { 6
 function_name = "putSeedInQueue_v1" 7
 role = "${aws_iam_role.example_lambda.arn}" 8
 h, andler = "main.main" 9
 runtime = "python3.6" 10
 s3_bucket = "iw-bd-demowebcrawler-lambda" 11
 s3_key = "putSeedInQueue/putSeedInQueue.zip" 12
 source_code_hash = 13
"${base64sha256(data.aws_s3_bucket_object.putSeedInQueue_sourcehash.last_14
modified)}" 15
 timeout = 120 16
 memory_size = 128 17
 tags = { 18
 Application="iw-bd-demowebcrawler" 19
 } 20
} 21
 22
data "aws_s3_bucket_object" "websiteWatcher_sourcehash" { 23
 bucket = "iw-bd-demowebcrawler-lambda" 24
 key = "websiteWatcher/websiteWatcher.zip" 25
} 26
 27
resource "aws_lambda_function" "websiteWatcher" { 28
 function_name = "websiteWatcher_v1" 29
 role = "${aws_iam_role.example_lambda.arn}" 30
 h, andler = "main.lambda_h, andler" 31
 runtime = "python3.6" 32
 s3_bucket = "iw-bd-demowebcrawler-lambda" 33
 s3_key= "websiteWatcher/websiteWatcher.zip" 34
 source_code_hash = 35
"${base64sha256(data.aws_s3_bucket_object.websiteWatcher_sourcehash.last_m36
odified)}" 37
 timeout = 120 38
 memory_size = 128 39
 tags = { 40
 Application="iw-bd-demowebcrawler" 41
 } 42
} 43
 44

Appendix G

73

data "aws_s3_bucket_object" "hyperlinkCollector_sourcehash" { 45
 bucket = "iw-bd-demowebcrawler-lambda" 46
 key = "hyperlinkCollector/hyperlinkCollector.zip" 47
} 48
 49
resource "aws_lambda_function" "hyperlinkCollector" { 50
 function_name = "hyperlinkCollector_v1" 51
 role = "${aws_iam_role.example_lambda.arn}" 52
 h, andler = "hyperlinkCollector.main" 53
 runtime = "python3.6" 54
 s3_bucket = "iw-bd-demowebcrawler-lambda" 55
 s3_key= "hyperlinkCollector/hyperlinkCollector.zip" 56
 source_code_hash = 57
"${base64sha256(data.aws_s3_bucket_object.hyperlinkCollector_sourcehash.last58
_modified)}" 59
 timeout = 300 60
 memory_size = 128 61
 tags = { 62
 Application="iw-bd-demowebcrawler" 63
 } 64
} 65
 66
data "aws_s3_bucket_object" "hyperlinkProcessor_sourcehash" { 67
 bucket = "iw-bd-demowebcrawler-lambda" 68
 key = "hyperlinkProcessor/hyperlinkProcessor.zip" 69
} 70
 71
resource "aws_lambda_function" "hyperlinkProcessor" { 72
 function_name = "hyperlinkProcessor_v1" 73
 role = "${aws_iam_role.example_lambda.arn}" 74
 h, andler = "hyperlinkProcessor.main" 75
 runtime = "python3.6" 76
 s3_bucket = "iw-bd-demowebcrawler-lambda" 77
 s3_key= "hyperlinkProcessor/hyperlinkProcessor.zip" 78
 source_code_hash = 79
"${base64sha256(data.aws_s3_bucket_object.hyperlinkProcessor_sourcehash.last80
_modified)}" 81
 timeout = 120 82
 memory_size = 128 83
 tags = { 84
 Application="iw-bd-demowebcrawler" 85
 } 86
} 87

sqs.tf

CLOUDWATCH EVENT TO EXECUTE THE APPLICATION EVERY SUNDAY AT 13:00 1
resource "aws_cloudwatch_event_rule" "everyday_rule" { 2
 name = "start_crawler_trigger" 3

Appendix G

74

 description = "schedule events for crawler" 4
 depends_on = ["aws_lambda_function.putSeedInQueue"] 5
 schedule_expression = "cron(0 0 13 ? * SUN *)" 6
 tags ={ 7
 Application="iw-bd-demowebcrawler" 8
 } 9
} 10
 11
ATTACH THE EVENT TO PUTSEEDSFUNCTION 12
resource "aws_cloudwatch_event_target" "start_crawler" { 13
 rule = "${aws_cloudwatch_event_rule.everyday_rule.name}" 14
 arn = "${aws_lambda_function.putSeedInQueue.arn}" 15
 target_id = "putSeedInQueue" 16
} 17
 18
 19
resource "aws_lambda_permission" "start_crawler_per" { 20
 statement_id = "AllowExecutionFromCloudWatch" 21
 action = "lambda:InvokeFunction" 22
 function_name = "${aws_lambda_function.putSeedInQueue.function_name}" 23
 principal = "events.amazonaws.com" 24
 source_arn = "${aws_cloudwatch_event_rule.everyday_rule.arn}" 25
} 26
 27
EVENT SOURCE MAPPING BETWEEN SQS, AND LAMBDA QUEUE -> 28
WEBSITEWATCHER 29
resource "aws_lambda_event_source_mapping" "endpoint_seeds_queue" { 30
 batch_size = 1 31
 event_source_arn = "${aws_sqs_queue.seeds_v1.arn}" 32
 enabled = true 33
 function_name = 34
"${aws_lambda_function.websiteWatcher.function_name}" 35
} 36
 37
EVENT SOURCE MAPPING BETWEEN SQS LAMBDA CITYURLQUEUE -> 38
HYPERLINKCOLLECTOR 39
resource "aws_lambda_event_source_mapping" "endpoint_cityURLQueue" { 40
 batch_size = 1 41
 event_source_arn = "${aws_sqs_queue.cityURLqueue_v1.arn}" 42
 enabled = true 43
 function_name = 44
"${aws_lambda_function.hyperlinkCollector.function_name}" 45
} 46
 47
EVENT SOURCE MAPPING BETWEEN SQS LAMBDA PDFURLQUEUE -> 48
HYPERLINKPROCESSOR 49
resource "aws_lambda_event_source_mapping" "endpoint_pdfURLQueue" { 50
 batch_size = 1 51
 event_source_arn = "${aws_sqs_queue.pdfURLqueue.arn}" 52

Appendix G

75

 enabled = true 53
 function_name = 54
"${aws_lambda_function.hyperlinkProcessor.function_name}" 55
} 56

trigger.tf

resource "aws_sqs_queue" "seeds_v1" { 1
 name = "seeds_v1" 2
 tags = { 3
 Application="iw-bd-demowebcrawler" 4
 } 5
 visibility_timeout_seconds = 150 6
 message_retention_seconds = 345600 7
 max_message_size = 262144 8
 delay_seconds = 0 9
 receive_wait_time_seconds = 0 10
 redrive_policy = <<POLICY 11
 { 12
 "deadLetterTargetArn": "${aws_sqs_queue.seeds-deadletter.arn}", 13
 "maxReceiveCount": 5 14
 } 15
POLICY 16
} 17
 18
resource "aws_sqs_queue" "seeds-deadletter" { 19
 name = "seeds_deadletter" 20
 max_message_size = 262144 #256kb 21
 message_retention_seconds = 1209600 #14 days 22
 visibility_timeout_seconds =90 23
 receive_wait_time_seconds = 20 24
 tags = { 25
 Application="iw-bd-demowebcrawler" 26
 } 27
} 28
 29
resource "aws_sqs_queue" "cityURLqueue_v1" { 30
 name = "cityURLqueue_v1" 31
 tags = { 32
 Application="iw-bd-demowebcrawler" 33
 } 34
 visibility_timeout_seconds = 180 35
 message_retention_seconds = 345600 36
 max_message_size = 262144 37
 delay_seconds = 0 38
 receive_wait_time_seconds = 0 39
 redrive_policy = <<POLICY 40
 { 41
 "deadLetterTargetArn": "${aws_sqs_queue.cityURLqueue-deadletter.arn}", 42
 "maxReceiveCount": 3 43

Appendix G

76

 } 44
POLICY 45
} 46
 47
resource "aws_sqs_queue" "cityURLqueue-deadletter" { 48
 name = "cityURLqueue_deadletter" 49
 max_message_size = 262144 #256kb 50
 message_retention_seconds = 1209600 #14 days 51
 visibility_timeout_seconds = 300 52
 receive_wait_time_seconds = 20 53
 tags = { 54
 Application="iw-bd-demowebcrawler" 55
 } 56
} 57
 58
resource "aws_sqs_queue" "pdfURLqueue" { 59
 name = "pdfURLqueue_v1" 60
 tags = { 61
 Application="iw-bd-demowebcrawler" 62
 } 63
 visibility_timeout_seconds = 150 64
 message_retention_seconds = 345600 65
 max_message_size = 262144 66
 delay_seconds = 0 67
 receive_wait_time_seconds = 0 68
 redrive_policy = <<POLICY 69
 { 70
 "deadLetterTargetArn": "${aws_sqs_queue.pdfURLqueue-deadletter.arn}", 71
 "maxReceiveCount": 200 72
 } 73
 POLICY 74
} 75
 76
resource "aws_sqs_queue" "pdfURLqueue-deadletter" { 77
 name = "pdfURLqueue_deadletter" 78
 max_message_size = 262144 #256kb 79
 message_retention_seconds = 1209600 #14 days 80
 visibility_timeout_seconds = 300 81
 receive_wait_time_seconds = 20 82
 tags = { 83
 Application="iw-bd-demowebcrawler" 84
 } 85
} 86

Appendix H

77

Appendix H
.gitlab-ci.yml

variables: 1
 AWS_ACCESS_KEY_ID: "xxxxxxx" 2
 AWS_SECRET_ACCESS_KEY: "xxxxx" 3
 4
image: 5
 name: hashicorp/terraform:latest 6
 entrypoint: 7
 - '/usr/bin/env' 8
 - 'PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin' 9
 10
before_script: 11
 - rm -rf .terraform 12
 - terraform --version 13
 - mkdir -p ./creds 14
 - echo $SERVICEACCOUNT | base64 -d > ./creds/serviceaccount.json 15
 - terraform init 16
 17
stages: 18
 - validate 19
 - plan 20
 - apply 21
 22
validate: 23
 stage: validate 24
 script: 25
 - echo "Validate" 26
 - terraform validate 27
plan: 28
 stage: plan 29
 script: 30
 - echo "Planing" 31
 - terraform plan -out "planfile" 32
 dependencies: 33
 - validate 34
 artifacts: 35
 paths: 36
 - planfile 37
 38
apply: 39
 stage: apply 40
 script: 41
 - echo "Applying" 42
 - terraform apply -input=false "planfile" 43
 dependencies: 44
 - plan 45

Appendix H

78

Appendix I:

.gitlab-ci.yml

variables: 1
 AWS_DEFAULT_REGION: eu-central-1 # The region of our S3 bucket 2
 BUCKET_NAME: iw-bd-demowebcrawler-lambda # Your bucket name 3
 FUNCTION_NAME: hyperlinkCollector 4
 AWS_ACCESS_KEY_ID: "xxxxxxxx" 5
 AWS_SECRET_ACCESS_KEY: "xxxxxxxxx" 6
 7
image: 8
 name: hoanguyen95/terraform_python:latest # Using custom image with terraform, and 9
python installed on Ubuntu 16.04 10
 entrypoint: 11
 - '/usr/bin/env' 12
 - 'PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin' 13
 14
stages: 15
 - build 16
 - package 17
 - deploy 18
 19
build: 20
 stage: build 21
 script: 22
 - echo "Building" 23
 - pip3 install -r requirements.txt -t src/ 24
 artifacts: 25
 paths: 26
 - src/ 27
 28
package: 29
 stage: package 30
 script: 31
 - cd src 32
 - zip -r src.zip * 33
 - echo "current dir" 34
 - ls 35
 artifacts: 36
 paths: 37
 - src/ 38
 39
deploy: 40
 only: 41
 variables: 42
 - $CI_COMMIT_MESSAGE =~ /\[commits3\]/ 43
 stage: deploy 44
 before_script: 45
 - pip3 install awscli 46

Appendix H

79

 script: 47
 - aws s3 cp ./src/src.zip 48
s3://${BUCKET_NAME}/${FUNCTION_NAME}/${FUNCTION_NAME}.zip 49
 # redeploy AWS Infrastructure 50
 - "curl --request POST --form token=’xxxxxx’ --form ref=master 51
https://gitlab.com/api/v4/projects/12983597/trigger/pipeline" 52
 environment: 53
 dependencies: 54
 - package 55
 56

Appendix H

80

Appendix K : AWS CloudWatch Dashboard for AWS Lambda Functions

Appendix H

81

