TECHNISCHE HOCHSCHULE NURNBERG
GEORG SIMON OHM

Faculty Informatics

Bachelor of Science — Business Information Systems

Bachelor Thesis

Development of a distributed cloud-based system
for crawling public real estate relevant data

for a large German real estate portal

Name: Nguyen, Viet Hoa
Student number: 2896037
Email: nguyenviethoa95@gmail.com
Submission date: 12.07.2019
Cooperating partners: Immowelt AG

Axel Schwanke

Maxim Fridental
First examiner: Prof. Dr. Michael Zapf

Second examiner: Prof. Dr. Friedrich Stappert

https://www.linguee.de/englisch-deutsch/uebersetzung/cooperating+partners.html

Acknowledgements

Acknowledgements

My bachelor thesis was written from March 2019 to August 2019 in the
product management department at Immowelt AG

I'would like to express my most sincere thanks to the Big Data team which
always provided me a nice working environment, with a lot of help, and
support. A special thanks for my advisors Axel Schwanke, Maxim
Fridental, and my colleague Stefan Nagel for their professional advices.
A special thanks to my advisor Prof. Dr. Michael Zapf for being always
ready to help, and to support my work with patience.

Declaration

Declaration

“I affirm that this bachelor thesis was written by myself without any
unauthorized third-party support. All used references, and resources are
clearly indicated. All quotes, and citations are properly referenced. This
thesis was never presented in the past in the same or similar form to any
examination board. I agree that my thesis may be subject to electronic
plagiarism check. For this purpose, an anonymous copy may be
distributed, and uploaded to servers within, and outside the Nuremberg

Institute of Technology”

Nuremberg, 12.07.2019

Nguyen, Viet Hoa

Tables of Contents

Table of Contents

List of Abbreviations

List of Figures

List of Tables

B N Y5 w0 Yo L5 Toxs (o) s DR 1

LA TMMOWELE AG ...ttt ettt eaeeeaeseateeaeseaeseseseneeeaeeesesenessaesssesenesenessnesane 1

1.2 About the “Baukarte” Project..........cciiiiiiiiniiniiiiicns 1

1.3 Purpose of the Web Crawler ...t 2

1.4 RESEAICH TMIETROM ...ttt et e et e et e e et e seeeseneeeeeeeesseesaneeeenneseeeenns 3

1.5 “AMSDIAtE”? DAtA SOULCE ...oooeveieiieeeeeee ettt ettt ee et e e st e s atessbeessesssseessssessasesssseesns 1

1.6 StIUCTULE OF the theSIS . ..eeieeeiieieeeieeeee ettt et e et e e et eeeeeeeeeseeeeeseeeesseesaseeseseseseeenns 6

2 Theoretical Back@round........ccoovueiiiiiiuiiiiininnieiiniiniiiinnieeiinneecnnieeesnmmeeesnn 7

2.1 Web Crawling..........cooiviiiiiiiiiiiiii bbb 7
201 IMLOTIVATION.c.oiiviiiiiiiciteteeetteett ettt sttt s e s at e st e s st e sabesat e s st esabesasessbessbesssesssesnsesnsesssesane 7
2.1.2 Concept of Crawling...........cccccvuiiiiiiiiiininiiniiic e 8
2.1.3 Types Of WeD CIAWIETSccceuiiiiiiiieiicei et 9

2.2 Serverless COMPULING.........ccccviiiuiuiiiieiiiiieieieie et s et s s 9
2.2 0 DIEINTtIONceieeeeeeeeeeeeee ettt et et e et e eeteeeaeeesteesteeseeeseeeseeeseeaseeeseeeseeaseeeneesseeaneens 10
2.2.2 SerVerless ALCRITECTULEc..ocvviviiiiiiiiiteettete ettt ettt et steesteeste e aeesteestesaeesseeveons 11
2.2.3 Serverless Application Programming Model ..o, 12
2.2.4 AWS Serverless Services in COMPALISONc.cccveueuerererererereieininieinisisteseeeeeenenes 12

2.3 FUNCHON A8 @ SEIVICEeviieeeieieeeeeeeeee ettt eeett et e seteeesaeeesseessstesestesesseesseessseessrnessnnes 15

3 Design, and ConCePtiON......uuueieeeiiiiiiiiiiiniieeeeiiiiiiiiieeeeeieessssseeseesessssssssseee 18

3.1 REQUILEIMEIESc.oiiiiiiiiiiiicccit ettt ns 18

3.2 Crawler desi@n.... ..o 19
3.2.1 INGtialiZEr IMMOAULE. ... oottt ettt ettt et eeeateseaeeseteeeseessaeesssaessnsessneenas 22

Tables of Contents

3.2.2 Website Watcher Module............ccooviiiiiiiiiiiicceceeeenes 22
3.2.3 Hypetlink ColleCtOr...........c.ccceiininiiiiiiiiniieiciciiinieeccttee ettt eens 23
3.2.4 Hyperlink Processor Module..............ccooooiiiiiiiiiiiiiiiiinseesieecceeenes 25
3.2.5 Data StOra@e........cccouimiiiiiiiiiiii e 26
3.3 Serverless deployment developmEntc.cccoeiiuiiuiiiiiieieininininieieeeeeeeeeaes 26
3.3 PULPOSE...i bbb 27
3.3.2 GOl 27
3.3.3 COMCEPL ...ttt 27
4 ImPlementationeeeeeeeeeeeeeeeeeeeemmimmeimiimiiiieiiis..............————————.———.——.. 29
4.1 Development environment, and Frameworkscccccceiiiiiiiiiiinnincnne, 29
4.2 Implementation of the core functions................cccovvviviiiiiiiiiiiie, 30
4.2.1 Initializer MOdUle.........ccccoooiiiiiiiiiiiiiicicc e 30
4.2.2 Website Watcher Module.............ccovuiiiiiiiiiiiiieicieieseeeceeenes 31
4.2.3 Hyperlink Collector Moduleccccoouiiiiiiiiiiiiiiaes 32
4.2.4 Hyperlink Processor Module.............ccccoiiiiiiiiieeiiiniiiiiininesesseeeeeeenes 32
4.2.5 JOb QUEUE. ...t 33
4.2.6 Adopted AWS SEIVICES.......ccouviriiiiiiiiiiitcccceeeteetetete e 36
4.3. CI/CD PiPEHNE.......ccoiiiiiiiiiiiiiicieie it 41
4.3.1 Frameworks, and development environment.ccceeeuevrreininennenneseseseeseenenes 41
4.3.2 AWS Resources CI/CD Pipelifi€c.ccoevueurieunicinieenieinieinieisieeseseesesessesessssennes 43
4.4 Evaluation............n Error! Bookmark not defined.
5. ConCluSioN....uuuuieeiiiiiiiiiiiinininiiccccnnireeeecccenannne Error! Bookmark not defined.
ReEfEIENCES uuunnriiiiiiiiiiiiittitrececccctreecc e e s 53

Tables of Contents

List of Abbreviations

API

AWS
AWS EC2
AWS S3
AWS SQS
CLI

FaaS
HTML
HTML
HTTP
I1aC

URL

Application Programming Interface
Amazon Web Service

Amazon Elastic Compute Cloud
AWS Simple Storage Services
Amazon Simple Queue Service
Command Line Interface
Function as a Service

Hypertext Markup Language
Hypertext Markup Language
Hyper Text Transfer Protocol
Infrastructure as Code

Uniform Resource Locator

Tables of Contents

List of Figures

Figure 1: Project CONCEPL ..ttt 2
Figure 2: Phrases of the research conducted in the actual Projectccoevviviciviiiniiinininicieinnnes 3
Figure 3: Bochum Official Journal HTML Code......ccccoouviiiiiniiiiiiniiciiriicieiriicieisiceensiceneniaes 1
Figure 4: Screenshot of Bochum Official Journal.........ccoccciviiiiiniiiiininiciiniicinicccsiccennes 2
Figure 5: Screenshot of Gottingen Official Journal........ocoiviiiiiiiiiiniiiiiciccrcceaes 2
Figure 6: Screenshot of Gottingen Official Journal Year 2019 ..., 3
Figure 7: Screenshot of Bremen Official Journal..........cccooviiiiiiiiinniiccns 4
Figure 8: Bremen’s Official Journals 2019ccccoovviiiiiiiiiiiiiiie 5
Figure 9: Flow chart of a crawler. Source: [36] (D.4) ..ccviiriiriniiiiiriiciiisiicieisiieieesieesensicenenians 8
Figure 10: Gartner Hype Cycle for Emerging Technologies. Source: Gartneroceceeevvennee. 10
Figure 11: Serverless application Jayers.........ccccviiiiiininiiiniiininiiiic e 11
Figure 12: FaaS Processing Model..........cooviiiiiiiiiiiiiiiiiicccsssncnens 16
Figure 13: Workflow of the web crawler.........coviviiiiiiiiicces 19
Figure 14: A generic work queue. Adapted: Burns [12] ..o, 20
Figure 15: Components of Web crawler ... 21
Figure 16: Workflow of Website Watcher Module........cccoieuiiicininiicininiiciicceecceeeens 23
Figure 17: Workflow of the Hyperlink Collector Moduleccceuvuviiiirniicininiiciinicieninens 24
Figure 18: Workflow of Hypetlink ProCessorcococeiviniicininiiciniiccisiiccsiicceececieneeaes 26
Figure 19: Initializer Module implemented with AWS Services ..o 31
Figure 20:Website Watcher Module implemented with AWS Services......ccoovvviviviiiiniiinnnee. 31
Figure 21.Hyperlink Collector Module implemented with AWS Servicesccocvviviiiniininnnee 32
Figure 22: Hyperlink Processor Module implemented with AWS Services......oocevvviicrrnnennee 33
Figure 23: SQS as Lambda's trigger on the left handsideccoeuvieenicinicnicinicnicnicnicniennes 33
Figure 24: AWS SQS as trigger for Lambda functionccceeeeurniccinniccniniceeseeneeeeeens 34
Figure 25: Simplify architecture of a running Lambda function.........ccccceviivviinvnicnnnnen. 36
Figure 26: Configurations of AWS Lambda Function ... 37
Figure 27: Result after invocation of Lambda function ..., 37
Figure 28: GitLab CI/CD PIPELNEScuiururririiriirieeireieineireieieieiseiseeessesetseeseee e ssesseeessessessessseens 41
Figure 29: Terraform APT Call....c.cooiiiiiiiiiiiiiiccrccree e 42
Figure 30: Terraform project repository in Githab ... 43
Figure 31: Deployment pipeline for AWS Infrastructure ..., 44
Figure 32: Deployment pipeline - AWS Lambda function.........cccccvvvivviininiicinicnnnnen 46
Figure 33: Screenshot - PDF folders stored in S3 Bucket.......ccoccevviviiiiviviiciiniiiiiiciiee, 50
Figure 34: Screenshot - Content of Berlin's fOlder ..o 50
Figure 35: Json structure - PDF mMetadata.....c.oocccuveiceininieeinceeicceeceeeseeeeeneeeeseneeeeens 51

il

file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301987
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301988
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301995
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13301997
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13302003
file:///C:/Users/Nguyen%20Viet%20Hoa/Desktop/BachelorThesis2.docx%23_Toc13302004

Tables of Contents

List of Tables

Table 1: AWS S3 Pricing for region eu-central-1 (Frankfurt) at the time of writing39
Table 2: Project structure of AWS Lambda function................. Error! Bookmark not defined.

il

1 Introduction

1 Introduction

This chapter gives an overview of the company Immowelt AG, explain the motivation

behind this project, and discusses the scope of my work.

1.1 Immowelt AG

Immowelt AG offers complete I'T solutions for the real estate industry. The core business
of the company is the real estate portals immowelt.de, immowelt.at, and immowelt.ch as well as
banen.de, ferienwobnung.com, and wobhngemeinschaft.de. This reflects in the second business area
of the company - the development of CRM software for the real estate agents estateOffice,
estatePro, and zmmowelt i-Tool. The main portal immowelt.de went online in 1996. It allows the
private owner to offer or to rent private real estate property. Besides, the user will find
extensive information on the topics of living, building, and financing, as well as price
overview of the real estate market [1]. In 2000, DataConcept GmbH was renamed
Immowelt AG. In 2015, Immowelt AG merged with its competitor Immonet GmbH
under the name Immowelt Holding AG. Today more than 500 employees work in two

locations in Nuremberg, and Hamburg [2].

1.2 About the “Baukarte” project

With the vision of being the number one real estate portal in Germany, it is essential to
continually come up with innovative features, which has not been developed by any other
real estate portals. One of those features could be the interactive building profile for
Germany.

With this feature, the real agent estate should be able to keep track of the upcoming plan
for new buildings with a visual representation on an interactive map. Nowadays,
interactive maps used not only on geo-data-specialized websites but also on real estate
portals and become a trend for visualizing mass data. Building permits, and public real

estate plans in the neighborhood often have a significant impact on the prices of real

1 Introduction

estate property. For example, 1, and value often goes up with planned increases in

residential building permits.

Project concept

The end-product of the project is planned to be a new feature on the immowelt.de website
for real estate agents. The official announcement should be collected automatically (1).
After that, the building permit will be extracted (2), the raw text will be tokenized (3),
transformed (3), and stored in the database (3). The information will be visualized on an

interactive map (4).

1 2 3 4
Automated data Data Data Data
collection extraction preparation visualisation

Figure 1: Project concept

The project team consisted of three students from the Nuremberg Institute of
Technology (Technische Hochschule Nurnberg Georg-Simon-Ohm). The company
representative was the project’s product owner from the product management
Department and interacted closely with the student team. The first student took
responsibility for the presentation layer, which visualizes building a permission based on
Google Map API. The second student developed an automatic text mining pipeline to
create visualizing components from building permissions in PDF. This thesis contributes
to the first step of the project “Automated data collection”. It should deliver an automated
mechanism to collect the data for the application. The overall architecture of the

“Baukarte” project can be viewed in Appendix A and B.

1.3 Purpose of the web crawler

The use of the web crawler is inevitable when it comes to collecting massive data set. The
use case for the web crawler implemented in this thesis is to extract information from an
official announcement containing new building permissions. While running web crawler
on alocal machine is fine or do-once tasks, and a small amount of data, where the crawling
process can be triggered manually. However, this is not a sustainable, and reliable solution
for retrieving a huge amount of data. Web crawler can be optimized with deploying into
the cloud to reduce operational management and increase parallelism. Cloud computing

also provides greater flexibility in term of computing capacity, and IP address.

1 Introduction

1.4 Research method

The purpose of this section is to introduce the methodology for developing a distributed
web crawler using cloud services. The research attempts to experiment and design a
possible solution for the distributed web crawler, and practices for adopting cloud
services. The solutions should also include technical implementation fulfilling the
practices of continuous development, and deployment process. As such, the thesis is
aimed to deliver a solution for a practical problem, and “the problem cannot be proven
mathematically, and tested empirically* [3]. The research method of this thesis is inclined
toward the methodology for the system development research published by Nunamaker,
Chen, and Purdin [3]. Figure 2 depicted the five different phrases of system development

research, and corresponding phases in the project.

Construct a conceptual * Do literature review
framework * Understand how a crawler works

A 4

Develop a system

¢ Initial architecture of the crawler

F 3
A 4

architecture

A A —

Analyze and design the

< Pl T icram | e ¢ Design the crawler’s components
system

A 4

Build the (prototype)
system | cCtvvtvttéttC * Build the crawler prototype

A 4

Observe and evaluate the

........... * Testing, observe and evaluate

sytem
the result

Figure 2: Phrases of the research conducted in the actual project
Adapted from: Nunamaker et al.
First, and foremost, a literature review is carried out to study how a web crawler works,

and how should it be designed. The result of the first stage is a reference architecture
show in Figure 9 in section 2.2.1. The second stage, which is displayed in Figure 15 in
section 3.2, designs the architecture to be implemented. Functional, and non-functional
requirements must also be defined, and identified in this stage, which are presented in
section 3.1. The third stage involves designing the crawler components. The fourth stage
presented in chapter 4 involves in translating the chosen design into code. Lastly, the
developed system will be evaluated, and compared with the objective at the beginning,

the test results will be summarized in chapter 5.

1 Introduction

1.5 “Amtsblatt” Data Source

In Germany, a municipality (“Stadt”, “Landkreis”, “Gemeinde”) has the responsibility to
publish their official journals (Amtsblatt). In these journals, the information about new
regulations, construction projects of the municipal council can be found. An example of
a typical official can be found in Appendix B. It also includes the real estate relevant
information such as land-use plan, development plan, and construction zoning map. To
some extent, these journals can be viewed on their website, and are available for download
in PDF format. Some journals do not have an online version and are available only in

printed version.

In this section, three different “Amtsblatt” website that provides a list of “Amtsblatt”
(official journal) will be compared. The sites we analyzed were Bonn Amtsblatt', Bochum
Amtsblatt’, Bremen Amitsblatt’. These websites represent the most common official
journal website layout. In the section below, a general analysis of the HTML layout will

be presented for each of the three websites.

a. Bochum Official Journal

As can be seen in Figure 4, the layout consists of a site header with general information,
searching, and navigation. The horizontal navigation on the left-h, and side enables the
user to navigate to other sites of the city municipality council. The yellow region is the
main content of the page, which displays the list of official journals chronologically. The
page has a basic Hyper Text Markup Language (HTML) structure, all the official journals
are ordered in a list using the tag. Each of tag contain a nested <a> tag which

redirected the user to the webpages where the official journals can be seen.

¥<ul class="bulletlist
v<li
¥ {span
a href="/C12571A30@01D56CE /viwContentByKey /WZBDAHEDA3I7BOCMDE / SETLE/
amtsblatt 24 20819.pdf" target="_blank”™ title="Hinweis: Die pdf-Datei
offnet sich in einem neuen Fenster.” class="link-download”>fusgabe 24 /
2019 vom 17. Juni 2019 == %0
/span
f1i
Jul

Figure 3: Bochum Official Journal HTML Code

This type of website can be classified as a simple listing style website, where all of the
documents are listed directly in the main page. This basic HTML structure makes it easier

to identify the official journals through the <a> tags.

! https://www.bonn.de/service-bieten/aktuelles-zahlen-fakten/amtsblatt.php
2 https:/ /www.bochum.de/amtsblatt
3 https://www.amtsblatt.bremen.de/

https://www.bonn.de/service-bieten/aktuelles-zahlen-fakten/amtsblatt.php
https://www.bochum.de/amtsblatt
https://www.amtsblatt.bremen.de/

1 Introduction

Impressum / Datenschutz Hilfe Kontakt Stadtplane Newsletter / RSS Mobil ‘Sprachewah\en .HBegnffemgeben,, P ‘

' BOCHUM @Terminvereinbarung cﬁKila—F‘ortal @)) BurgerEcho @Mem Bochum n a G r@ ‘..l

Rathaus, Biirger- und Leben, Vielfalt und Tourismus und Kultur, Schulen und ~ Wirtschaft und Wissenschaft und Politik, Wahlen und
Pr vice M i g Standortmarketing Technologie Bezirke

Rathauskalender » Rathaus, Burger- und Presseservice

=i o) Vorlesen P

= Juni 2019 =
Tl B ESATSA p att
7 2
3 4 5 6 T 8 El Das Amtsblatt ist das amtliche Verkundungsblatt fur die Stadt Bochum. In inm werden die amtlichen Bekanntmachungen und

Ausschreibungen veroffentlicht.
0 11 12 13 14 15 16

Ein gedrucktes Exemplar des aktuellen Amisblattes erhalten Sie in allen Blrgerbiros, im Bau-Birgerbtra und im Bro fir

17 18 19 20 21 22 23 Birgerbstelligung.

Bei Fragen zu den Bekanntmachungen und Ausschreibungen wenden Sie sich bitte an folgende
Telefonnummer: 0234 / 910-30 80

Das Amtsblatt konnen Sie auch regelmaRig uber unseren Newsletter erhalten
Veranstaltungen in Bochum E
» Akiuelles aus Bochum * Inhaltsverzeichnis I3

v Rathaus, Birger- und Presseservice

» Online-Dienste / Formulare « Ausgabe 26 / 2019 vom 1_Juli 2019 Fa
O NETEIEE « Ausgabe 25 /2019 vom 24. Juni 2019 F1
» Birgerbeteiligung
= Ausgabe 24 /2019 vom 17. Juni 2019 |
» Arbeitgeberin Stadt Bochum
, Alles auf einen Blick = Ausgabe 23 /2019 vom 11 Juni 2019 A
» Rathaus-News / » Ausgabe 22 /2019 vom 3. Juni 2019 ¥
Ratsinformationssystem
« Ausgabe 21 /2019 vom 27. Mai 2019 F3
» Oberbirgermeister und
Verwaltungsvorstand « Ausgabe 20 /2019 vom 20 _Mai 2019 I
[AT (R ET « Ausgabe 19 /2019 vom 13. Maj 2019 F1
» Burgerbiiros / Amter / Institute

Figure 4: Screenshot of Bochum Official Journal
b. Gottingen Official Journal

The screenshot in Figure 5 shows the site layout of Géttingen Official Journal. As can be
seen, the official journals list cannot be viewed directly on the main page. They can be

only detected if the user clicks on one of the three boxes ordered by year.

#* Rathaus v Leben v Wissenschaft & Wirtschaft v Kultur » Tourismus 2

In ihrem Amtsblatt verdffentlicht die Stadt G6ttingen alle wichtigen
Bekanntmachungen.

Hier werden die Amtsbléatter des laufenden Jahres und der jeweils beiden
letzten Jahre in chronologischer Reihenfolge veréffentlicht.

Amtsblatt

SIE SIND HIER: STARTSEITE > RATHAUS > BEKANNTMACHUNGEN > AMTSBLATT

€— Bekanntmachungen

Amtsblatt

Vergabe & Offentliche
Ausschreibungen

Amtsblatt Amtsblatt
Stadtrecht 2019 2017

Bauleitpléne

Figure 5: Screenshot of Gottingen Official Journal

2

Introduction

Once the user clicks on the boxes, they are redirected to another website, where the

list of documents can be seen, and are available to download, as seen in Figure 6.

DEUTSCH ~ ®a0 @ S
G |GOTHNGEN - STADT, DIE WISSEN SCHAFFT Suchbegriff cingeben Q
* Rathaus v Leben v Wissenschaft & Wirtschaft ~ Kultur » Tourismus 2
¢— Amtsblatt e N 0N
| < zurtek | [@ |
\ / \ /
—_/ N
Amtsblatt 2019
Amtsblatt 2018

Amtsblatt 2019

Amtsblatt der Stadt Gottingen - Nr. 12/2019

vom 06. Juni 2019 &)
Amtsblatt der Stadt Géttingen - Nr. 11/2019 I
vom 28. Mai 2019 =
Amtsblatt der Stadt Gottingen - Nr. 10/2019 I/l\‘
vom 20. Mai 2012 \=/

Figure 6: Screenshot of Gottingen Official Journal Year 2019

c. Bremen Amtsblatt

In the screenshot of Bremen Official Journal, the list of official journals is also not
available on the main page. First, the user is required to choose a year in from the
dropdown list (marked yellow) and clicks on “Suche” button. Once a year is chosen,
the page loads again, and list of documents of the chosen year are showed underneath

the dropdown list in Figure 8.

1 Introduction

BREMEN

- BREMISCHES AMTSBLATT
ZWEI STADTE. EIN LAND

ST T

GESETZBLATT AMTSBLATT AMTLICHE BEKANNTMACHUNGEN
AMTSBLATT Newsletter
Anmelden!
Das Bremische Gesetzblatt und das Bremische Amtsblatt sind die amtlichen Verkiindungs- bzw. N1

Veroffentlichungsorgane der Freien Hansestadt Bremen. Beide werden in elektronischer Form

& 3 2 3 § : ? Wenn Sie den Newsletter empfangen

geflhrt, sie werden auf diesen Seiten dauerhaft zum Abruf bereitgestellt. Weitere Informationen. X . o ;
mochten, registrieren Sie sich bitte
zuerst!

E-Mail:
E-Mail Adresse
Fundstellensuche
Passwort:
Brem.ABL 2019 v S. Seitenzahl eingeben Password
lden
2019 anmel
2018 Suche
2017 | Registrieren | Passwort vergessen
2016
2015

2014 ftsblatter eines Jahrganges

S
2019 v Nachfolgend finden Sie die vollstandigen

Jahresarchive zum Download

Jahresarchiv 2013
Jahresarchiv 2014

Figure 7: Screenshot of Bremen Official Journal

This responsive web design of this official journal website, which contains the JavaScript
elements such as the search box makes it extremely complicated to be crawled. Because
the link to the PDF files cannot be found directly in the HTML code on the main page.
Firstly, the crawler must be able to automatically identify that there is a dropdown list in
the HTML code. Secondly, it must simulate a user action of choosing the link in the
dropdown, and a click on the search button. This set of action could be accomplished on
a single website with some web browser automation tool such as Selenium . However,
this solution also not generic when it is applied to several websites. Because the
automation tool can only work with the condition that the ID of the dropdown element
is provided. It would be very time consuming to manually investigate the HTML code in
order to retrieve the ID of each dropdown element of each website. Furthermore, It

would be impossible to write a generic crawler fulfilled this requirement.

* https:/ /www.seleniumhg.org/

1 Introduction

BREMEN
BREMERHAVEN BREMISCHES AMTSBLATT Suchbegriff hier eingeben S | KONTAKT
ZWEI STADTE. EIN LAND.

Suchergebnis

Alle Amtsblatter des Jahrganges 2019 : 127

1. Amtsblatt 2019 Nr. 127 o»

Datum der Verdffentlichung: 25.06.2019

Hinweistext: Fachspezifische Prifungsordnung fiir den Masterstudiengang ,Soziologie und
Sozialforschung” an der Universitat Bremen

(S. 680 - 689)

N

. Amtsblatt 2019 Nr. 126 o»

Datum der Verdffentlichung: 25.06.2019

Hinweistext: Ordnung zur Anderung der fachspezifischen Prifungsordnung fur das Fach
~Musikpadagogik” im Zwei-Facher-Bachelorstudium an der Universitat Bremen

(S.672 - 679)

w

. Amtsblatt 2019 Nr. 125 o»

Datum der Verdffentlichung: 24.06.2019

Hinweistext: Ordnung zur Anderung der fachspezifischen Prifungsordnung fur den
Masterstudiengang ,Lehramt an Grundschulen® an der Universitat Bremen vom 23. April 2013
hier: Anlage 1-8 Regelungen fur das Fach Musikpadagogik

inkL. der fachdidaktischen Anteile

4. Amtsblatt 2019 Nr. 124 o»

Datum der Verdffentlichung: 24.06.2019

Hinweistext: Ordnung zur Anderung der fachspezifischen Prifungsordnung fur den
Masterstudiengang ,Lehramt an Grundschulen® an der Universitat Bremen vom 23. April 2013
hier: Anlage 1-7 Regelungen fur das Fach Religionswissenschaft/ Religionspadagogik inkL. der
fachdidaktischen Anteile

(S. 665 - 669)

Figure 8: Bremen’s Official Journals 2019

d. Scope of the thesis

The examples mentioned above only cover a small fraction of possible website layouts
available on the Internet. Because there is no standard for designing an official journal
site. The wide variety of website layout makes it impossible to make a generic crawler that
is suitable for all web layouts. It would be very unpractical to review and handle all kinds
of website layouts. Notably, the website layout that has some JavaScript elements in it
requires individual crawler configuration. In limited time of a bachelor thesis, it is
unrealistic to be able to develop a crawler for three types of website layouts. As a result,
only 50 official journal websites of 50 municipal councils will be chosen to be crawled.
These websites share the same overall layout of the Bochum Official Journal site, in which
the list of documents is available directly on the main page. This type of HTML structure

contains no redirecting to other pages allows for easy identification, and retrieval.

1 Introduction

1.6 Structure of the thesis

This thesis is arranged into fives chapters including this chapter:

Chapter 2 — Theoretical Background introduces the terminology, technologies, and
concepts which will be used throughout this thesis. It introduces terms like cloud

computing, serverless computing, and web crawling.

Chapter 3 — Design and Conception provides the necessary designs for the
implementation in chapter 4. First, it addresses the expectations for a project-specified
web crawler. From the system perspective, some functional requirements must be
addressed with care to guarantee that the crawler meets all the functionalities needed. The
functional requirements support the design process of the web crawler later in this
chapter. The design presents the overall architecture of the web crawler and details about
each module. The design for the deployment pipeline of the crawler are also introduced

at the end this chapter.

Chapter 4 - Implementation describes the process of transforming the web crawler’s
design in previous chapter with AWS Services. In addition, it also describes how the

deployment pipeline is implemented.

Chapter 5 — Conclusion examines the web crawler and the deployment pipeline in terms
of performance. Based on the examinations, the limitations and suggestions for further

improvements, before it ends the thesis with a personal conclusion about the thesis.

2 Theoretical Background

2 Theoretical Background

This chapter lays the theoretical foundation for the design, and implementation of the
web crawler in this thesis. The outline of this chapter is as followings: the first section will
introduce the motivation of web crawling in this thesis and gives a brief description of
how web crawlers work under the hood. The second section of this chapter will introduce
Serverless Computing as an umbrella term. The last section reviews two important
technologies Serverless and Function as a Service and explains how these technologies

can be utilized to build our application.

2.1 Web Crawling
2.1.1 Motivation

With the exponential growth of information sources available on the World Wide Web,
exploring web data becomes an integral part of many big enterprises, it can range from
collecting customer opinions about products, exploring data for scientific research or
even to build an application on top the data collected. Furthermore, the unstructured
information from Web pages needs to be transformed into structured information that
can be used in a subsequent stage of analysis. An automated program as known as a web
crawler, which scans through the web, and downloads the pages which can be reached by

the links, is the key to massive data collection. The two main reasons are:

A user needs to think, grab the mouse, point to the link, click on it, and finally copy paste
content of a web page, whereas a computer program can perform this in milliseconds. It

is straightforward to use an automated program to request, and parse web content.

Using a web browser to search web content is a visual and intuitive but not very useful
way of gathering massive data from the World Wide Web since the content rendering

process is long-running.

2 Theoretical Background

The largest application field of web crawler is for commercial search engines such as
Google, Bing, and Yahoo!, which are used by millions of users daily around the world.
Google, for example, developed its crawler known as Googlebot, which traverses web
pages by following hyperlinks, and stores web documents that are later indexed to
optimize the search process. Although Googlebot is believed to be the first large-scale

web crawler in the world, the history of web crawler can be traced back long before the
launched of Google in 1997.

2.1.2 Concept of crawling
Figure 9 shows the flow of a basic crawler. In this most straightforward form, a crawler

starts from a set of seed pages (URLs), and then uses the links within them to fetch other
pages. The link in these pages are, in turn, extracted, and the corresponding pages are
visited. The unvisited URLs are called the frontier. The list is initialized with the seed
URLs which may be provided by the user or another program.

B
Seed URLs |

TTUM Initialize frontier
—» Frontier & N dequeue U_RL from
: frontier
¥
@./. — —
__________ Extract URLs and add
to fr(intier no
Repository [Store page
done

Figure 9: Flow chart of a crawler. Source: (p.4)

In each iteration of its main loop, the crawler picks the next URL from the frontier,
fetches the page corresponding to the URL through HTTP, parses the retrieved page to
extract its URLs, adds newly discovered URLs to the frontier, and stores the page in a

2 Theoretical Background

local disk repository. The crawling process may be terminated when a certain number of

pages have been crawled.

2.1.3 Types of web crawlers

Web crawlers may differ from each other in the way they crawl web pages. This is mainly
related to the final application that the web crawling system will serve. Crawlers can be

classified into four categories [4]:

Focused Crawler is for discovering and retrieving web pages that are related to a specific
area of interest. The relevance of the web pages must be determined before being crawled.

This kind of crawler requires less hardware and bandwidth resources.

Incremental crawler periodically revisits the pages. During its crawls, it may also add new
pages into its data collection in order to keep the data collection fresh. The crawler also
replaces old, and less important pages by new, and more relevant pages. The advantage

of incremental crawler is that data enrichment is achieved.

Distributed crawler utilizes distributed computing to distribute the workload on many
crawlers. There is a central server manages the communication, and synchronization of
the workers. Distributed crawler is robust against system crashes, and other events, and

is adaptable to many crawling applications.

Parallel crawler executes multiples crawlers simultaneously. This kind of crawler offers

the solution for retrieving web pages content in a reasonable amount of time.

2.2 Serverless Computing

It is worth to mention that the focus of this thesis is on Amazon Web Services (AWYS),
because Immowelt AG has chosen AWS as their main computing platform. With the
ambition to migrate some of the core infrastructures into the cloud environment. It is
practical to have a look at the existing cloud computing models in advance. One of the
emerging models is Serverless Computing. As such, it is recommended that I'T company

start to learn its opportunities, and limits, identify best practices, and pilot test cases to
build knowledge, and skills.

Servetless is listed in the top 10 Trends and Impacting Infrastructure & Operation for
2019 by Gartner in one of their recent articles [5]. It is predicted to become a mainstream

between 2010, and 2022, with 10% of IT organizations already using serverless

2 Theoretical Background

computing. This can be reflected in the fact that the three largest cloud providers all have
their own platform for serverless computing 567 This reflects the explosion of interest in
Serverless. Gartner classified serverless as being in its initial cycle phase, “innovation

trigger”.

Gartner Hype Cycle for Emerging Technologies, 2017

A Virtual Assistants Deep Learming Prateau wil be reached i
o7 Platform Machine Learning @ lessthan 2 years
Smart Robots Y\ Autonomous Vehicies @ 2to5yars
Nanotube Biectronics

Edge Computing @ 5to10years
A\ mere than 10 years

Expectations

Smart Dust /X
As of July 2017

Trough of
Disillusionment

Innovation

Trigger Slope of Enlightenmant

Time

gartner.com/SmarterWithGartner

Source: Gartner (July 2017)
2017 Gartner, Inc. and/or its affiliates. All rights reserved ar nera

Figure 10: Gartner Hype Cycle for Emerging Technologies. Source: Gartner

2.2.1 Definition

Serverless Computing is an emerging paradigm for cloud computing, it is hard to find a

universal definition. Due to the lack of terminology, Serverless, and FaaS are often used

> AWS Setvetless https://aws.amazon.com/setvetless/
¢ Microsoft Azure Servetless https://azute.microsoft.com/en-us/solutions/servetless

7 Google Cloud https://cloud.google.com/servetless

10

2 Theoretical Background

interchangeably by the user community [6]. However, it is worth differentiating between

Faa$S, and Serverless Computing.

Serverless Computing is a broad notion refers to a cloud-computing execution model in
which the application runs on servers that are fully managed by a third party [7]. In other
wortds, Serverless Computing is a cloud computing model in which code is run as a service
without the need to maintain or create the infrastructure. As a result, Serverless
application can be considered as a cloud-native application, which is deployed on an

abstracted infrastructure owned, and managed by cloud providers.

Serverless covers a range of techniques, and technologies including Backend as a Service
(Baal), and Function as a Service (FaaS) [8]. Backend as a Service is a cloud model in which
developers outsource all the backend components of a web or mobile application. Typical
BaaS Services are user authentication, database management, remote updating, and push
notifications, as well as cloud storage, and hosting [9]. Function as a Service will be

discussed thoroughly in section 2.3.2 as it will be used intensively in our application.

2.2.2 Servetless architecture

Serverless architecture relies completely on

Function-as-a Service cloud technology. Following the white paper
_ _ about AWS Well-Architected Framework
[Function1] {_Funtion3] published by AWS in 2018 [10] as shown in

menon Figure 11, a serverless application can be

Compute Layer decomposed into a five layers model to

facilitate good design in the cloud including:

‘ Data Layer ‘ g &)
‘ Messaging and Streaming Layer ‘ e Compute layer manages requests from

‘ User Management & Identity Layer ‘ external systems, controlling access, and

ensuring requests are appropriately authorized.
I | | coins the runtime environment that the

business logic will be deployed and executed by

Serverless Application

Figure 11: Serverless application layers ® Data Layer manages persistent storage

from within a system. It provides a mechanism
to store states that the business logic will need.

e Messaging, and Streaming Layer: The messaging layer manages communications
between components. The streaming layer manages real-time analysis and processing

of streaming data.

11

2 Theoretical Background

e User Management and Identity Layer provides identity, authentication, and
authorization for both external, and internal customers of the application.
e System Monitoring and Deployment manages system visibility through metrics, and

creates contextual awareness of how it operates, and behaves over time.

2.2.3 Serverless Application Programming Model

Besides the benefits of scalability without additional configuration. Serverless computing

has effects not only on how applications are executed but also how they are developed.

Development, and Debugging

Local debugging is complicated. Because the application is expected to be executed in the
cloud, and sometimes being triggered by other cloud services, it requires a lot of time to
reproduce a production execution environment in local debugging. Serverless application
can be debugged, and test locally by writing custom wrapper. Integration test can be done

by adopting practices such as mock or stub test.
Infrastructure Management, and Deployment

The serverless application is not only about functions, it contains multiple resources such
as database, queue service, log monitoring, and security credentials. AWS provides web
console, AWS CLI, and AWS Serverless Application Model (AWS SAM) for managing
serverless resources. AWS SAM is a good choice for managing multiple resources
application since it is written over AWS CloudFormation, a native AWS tool for defined
AWS Resources.

2.2.4 AWS Serverless Services in comparison

It is worth to get familiar with existing services before choosing the suitable one for
development. The three primary computing services of AWS Serverless, namely AWS
Batch, AWS EC2, and Lambda were taken into consideration for the deployment of the
web crawler. Each service was experimented to gain insights about its strengths and

drawbacks.

a. AWS Batch

12

2 Theoretical Background

AWS Batch * is a fully-managed service by AWS, which will provision the optimal
quantity, and type of compute resources. AWS Batch has the following component. Job
queue contains the jobs, which is an independent task to be executed with multiple inputs.
These jobs are defined with a job definition, which is basically a Docker image
encapsulating the business logic code. AWS Batch monitors the ongoing jobs, and job
queues , and can auto-scale cluster capacity depending on workload. AWS Batch
uses Elastic Container Service (ECS) for orchestrating Docker containers for running
tasks. AWS does not charge an extra fee for the batch jobs, they only charge for the
resources which Batch jobs are using such as EC2 Instance, S3 Storage. With AWS Batch,
the crawler can be implemented as followed. The business logic of the crawler can be
defined in a job definition, the seed URLSs can be put in the job queues. Once started the

job will receive one URL from the job queues and perform the crawling process.
Advantage

AWS Batch is efficient for provisioning the optimal used of computing resources that are
required for performing the batch jobs. Because it is fully integrated with AWS Platform
so it utilized the networking, scaling of the AWS.

Disadvantages

As each Batch job is a containerized application, Batch expects the Docker skill from the
developer. The lack of experience with Docker might lead to some hidden problem. In
addition, it is worth to mention that the user interface is confusing for developers who
are not familiar with AWS. Because it is less intuitive when compared to other AWS
Services. One important point is that AWS Batch doesn’t have a job history that supports
monitoring, which makes it extremely difficult to monitor its behavior. Furthermore,
Batch is a less popular services of AWS. The development with AWS Batch is
cumbersome with little support from the community. Last but not least, there are less
documentation about the operational behavior of Batch, which might be hard for

troubleshooting, and fixing the application.

b. AWS EC2

AWS EC2’ is a virtual cloud infrastructure service, which provides on-demand computing
resources (instances) to create powerful servers in the cloud. AWS EC2 instances can be

scaled in terms of processing power, and computing memory.

8 https://aws.amazon.com/batch/
% https:/ /aws.amazon.com/ec2/

13

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html
https://aws.amazon.com/ec2/

2 Theoretical Background

Advantages

The most significant advantage of EC2 is its ability to scale horizontally with increasing
workload. It is what makes EC2 very attractive services for hosting provider. The instant

setup of newer server instances in minutes with a click of a button allows.

Disadvantages

Although the setting up for a single EC2 machine can be easy, being able to scale up EC2
is not as much convenient. In order to scale out the EC2 Instances in a cost-efficient
manner requires predicting the incoming workload. Besides, the cost model of AWS EC2
is also not very flexible. The user has a large upfront payment even if they do not fully
use the instances in the purchase length. It is also hard to decide which instance types is
suitable, it is sometimes forced to get bigger instances only more CPU or RAM are
needed. In general, the entire configuration, and setup process demands comprehensive
technical knowledge, and requires proper training. The learning curve of EC2 can be steep

and can take some time to be fully familiar with this service.

c. AWS Lambda in conjunction with SQS

AWS TLambda ' is a Serverless FaaS runs backend code without configuring and

managing a platform or infrastructure.
gingap

Advantages

The basic advantage of Lambda is that the user only pays for the time the function
running, and the resources it need to execute. AWS Lambda functions are billed by the
millisecond of CPU time. The main distinguishing feature of Lambda rapid development.
AWS Lambda enables faster prototype, and the developer must spend less time on
operational issue. Furthermore, the building, and deploying of Lambda is straightforward,
and is simple when compared to deploying an entire server. The developers can even
write the code directly in the AWS Lambda Console. It is a good starting point for
developer with less or no experience with developing in AWS. Since it is easier for

developer to concentrate on the application logic.

Disadvantage

The lack of control over environment should be considered before using Lambda, the

developers are not able to custom install packages or software on the running

10 https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

14

https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html

2 Theoretical Background

environment. AWS Lambda functions also suffered from cold start, the delay by the first
function invocation or invocation after a long idle time. The debugging and testing of

Lambda can be troublesome but can be alleviated by using some framework.

d. Conclusion
Each of the services mentioned above has a niche where its suits best. AWS Batch is a
new computing platform, which can have a lot of potentials but need to be study careful
before usage. EC2 in conjunction with Elastic .oad Balancing is also excellent for web
hosting. For example, if EC2 is used to host a webpage, the computing resources being
used is constant. However, the cost to use EC2 is unpredictable since we cannot calculate

exactly the crawling workload.

Based on the weakness, and the strength of each service, AWS Lambda in conjunction
with AWS SQS was chosen for the deployment of the web crawler, because it is easy to
get familiarized with and quick to develop a first prototype. Furthermore, the usage of
AWS Lambda has raised a lot of interest at the company since it is a most popular

Function as a Service, an emerging cloud computing service.

2.3 Function as a Service

Function as a service (FFaaS) is a new service offered by cloud providers. This is supported
by the fact that the “cloud function” products such as AWS Lambda'', Azure Functions'?,
and Google Cloud Functions". The idea behind FaaS is that the developers can develop,
execute, and manage their own code without having to handle the under lying complexity.
The developer only needs to write his function code and define the function with an
event. The occurrence of this event will trigger the execution of the function, as known

as invocation. After the function finishes an execution it will be immediately terminated.

This makes FaaS cost-effective in comparison with other computing models, because the
user is only charged for the time a function is running. Launching a web server on a virtual
machine, for examples Amazon EC2, will be charged per hour, even if there are no
requests come in. The second benefit of FaaS is auto-scaling is handled completely by the
cloud providers. This will allow the application to be more responsive since it is designed

to be scaled at any unpredictable workload. In general, a serverless might be a good choice

1 https://aws.amazon.com/lambda/
12 https:/ /azure.microsoft.com/en-us/setvices/functions/
13 https://cloud.google.com/functions/

15

2 Theoretical Background

for a workload that is asynchronous, easy to parallelize into independent units of work. It

can also good at handling infrequent or sporadic dem, and.

1. Request
function 1

> . 2. Retoneve function
Cloud Provider Interface <

+

5. Retumn result
3. Poll for available instance and push the container it

4. Execute code

Client
v

Q | Function 1 |

Code

1 Container 1
(Function 1) ry
Execution Execution Execution

Devloper Environment Environment Environment
EC2 Instance EC2 Iastance EC2 Instance
Push codes

Figure 12: FaaS Processing Model

The execution model behind FaaS is described in Figure 12. Whenever there is a new
incoming request through the API, an available instance within the pool is used to handle
that request. The corresponding code of the requested will be retrieved from a code
repository and pushed into a container. The container is then pushed to the chosen
instance and executed. The result is then returned to the client, who sent the request
through the cloud provider interface (API). The code is maintained and pushed into code
repository by the developer.

The “cold start” problem arises from this execution model in other word the first
execution of function always takes longer time. Because the container has to be spun up,
and the code has to be loaded into the container. The next execution won’t take as much
time as the first one since the container is already “warm”. However, after a long period

of idle time, the container will be terminated, and the delay problem will happen again.

Conclusion

In conclusion, serverless computing in conjunction with Function as a Service leveraged
with task queueing for batch processing is a promising technology to implement batch
processing on premise. However, there are still open questions related to this architecture,
namely:

e How to design a serverless architecture?

16

Theoretical Background

¢ How to meaningfully implement the business logic with the lambda function on

cloud platforms?

e How to deploy a serverless application fast on cloud platforms?

17

3 Design and Conception

3 Design and Conception

This chapter will present the design of the crawler. Chapter 3 will be organized as
following: Section 3.1 will present the requirements. Section 3.2 will give an overview of
the system’s architecture and explain the role of each component. Section 3.3 will

propose a deployment pipeline for the applications.

31 Requirements

The requirement analysis aims to identify the most important specifications for the web
crawler and to consider the feasibility of them. The requirement analysis was done as
follows. At the beginning stage of the project, the product owner proposed the initial
ideas of the project in the kick-off meeting. The software requirements analysis is
conducted independently based on the product owner’s ideas. Although the requirement
analysis and architecture choice were done, they are not completely fixed. During the
development, the product owner, and the team Big Data were involved all the time and
introduced additional requirements.

These are the requirements from both functional, and non-functional perspectives:

e The application must be deployed and run completely on the cloud environment to

avoid IP being blocked.

e The crawler must behave politely and following the robot.txt rules.

e The results of the crawling process must be according to the use case:
o Unstructured Data must be stored in the S3 object store.

o Metadata, logging data must be stored in a relational database.
e The crawler should be designed and implemented generically in term of the

monitoring of crawling jobs.

e The interface for monitoring crawling jobs has the following specification:

18

3 Design and Conception

o Enables the monitoring following metrics: the number of successful, deferred,
and failed jobs. Deferred jobs are jobs that have a temporary error and needs to
be relaunched.

o Allows users to keep track of the crawling history: last crawling history, crawling
schedule plan.

o References to the cost of the crawler history.

e The programming language of choice should be Python. Furthermore, the crawler

should be easily written and debugged locally.

3.2 Crawler design

The following section is organized as follows. In the first subsection, a general workflow
of a web crawler is introduced, which serves as a starting point for the choice of
architecture type. After that, a suitable, and high-level architecture approach is chosen
based on the workflow analysis. The last section will describe how the crawler is designed

in detail by explaining each of its components in term of business logic.

General Workflow

Figure 13 presents the general workflow of the crawling process in favor of a focused
web crawler. It is obligatory to implement a focused web crawler, as the crawler is
expected to only retrieve the official journals, and no other types of documents on a
webpage in order to avoid contaminating the database with irrelevant data. The high
accuracy of the PDFs discovered will help to reduce the effort spent in re-filtering the
PDFs in the next phase of the “Baukarte” project, which involves in data mining, and text

extraction.

— mnessioce T
T

hreads

FETCH SEED DOWNLOAD

Threads PDF

FETCH,
SEED EXTRACT &) URL

QErE CLASSIFY URLs QUELE

Figure 13: Workflow of the web crawler

19

3 Design and Conception

The workflow consists of three main steps. First, the input retrieval part fetches the data
from a data source, in this case, the seed URLs from the database. Secondly, the business
logic processing part applies a set of predefined business logic to each item (URL).
Examples can be extracting hyperlink from the HTML markup and classifying them. If
the URL is predicted to be on-topic, then its links are extracted and are appended into
the URLs. Thirdly, a worker will fetch the URL links, and download them into persistent
storage. The workflow can be periodically repeated maybe once or twice a week in order

to keep the PDF collection fresh.

Distributed message queue as a solution

Based on the workflow in Figure 13, it is easy to recognize that the crawling process has
the characteristics of batch processing. Firstly, the crawling process only needs to be
executed periodically. Secondly, the crawling processing can be fully automated, and

therefore no human interaction is needed.

According to Burns [11], in order to reduce the processing time, a simple technique can
be applied such as message queue. Figure 14 shows the idea behind the work queue
system, which can be divided into four components: producer, task queue, queue
manager, and a pool of workers. The producer pushes messages into the queue. Each
message contains a task. Each task might be a small unit of data needed to be processed
in the same way. The queue manager has the responsibility to distribute the tasks evenly
to the workers. It will poll, and assign the tasks to any worker, which has the free executing
capability. The random distribution is allowed, because the tasks are independent of each
other, and do not need to be processed sequentially. The usage of a message queue for

batch processing has three advantages:

- D
/ Worker 1

push task
Producer Queue > Worker 2
Manager

Task Queue distributes \

tasks

Worker 3

Worker pool

Figure 14: A generic work queue. Adapted: Burns /77/

Firstly, the message queue serves as a buffer between the producer and the worker, which
increases the efficiency of the producer. For examples, if the producer, and the worker

have different processing rates. The producer can still work asynchronously from the

20

3 Design and Conception

worker and do not have to wait until the worker finishes the previous task to process a

new task.

Secondly, the workers can be scaled up or scaled down to ensure that the work can be

handled within a certain amount of time. This increase the parallelism of the web crawler.

Lastly, the message queue system also shows high compatibility to the deployment model
(AWS Lambda). It allows the application to be designed following the best practices
recommended by AWS [10]: singularity, scalability, and stateless. The L.ambda function
has a single purpose and has a concise business logic. Lambda function can be scaled up,
and down based on the workload. After each execution, LLambda passes the output to

another queue or other functions and terminates, which makes it completely stateless.

Based on the huge advantages of message queue shown above, it is the best candidate for
the crawler architecture and is chosen to implement the web crawler. Figure 15 shows the

components of the web crawler including:

e [Initializer Module triggers the crawling task so that it will be started periodically
without any uset’s interaction.

e Website Watcher Module monitors website-contents changes and informs the

Hyperlink Collector Module about websites that should be crawled or re-crawled.

INITIALIZER

2
:
7
A
é
2
é
E

Threads

CITY_URL
QUEUE

HYPERLINK
COLLECTOR

WEBSITE
WATCHER

Threads v
HYPERLINK < PDF_URL
PROCESSOR

Figure 15: Components of web crawler

e Hyperlink Collector Module is in charge of parsing websites HTML markup,
identifying links for PDF file, retrieving the hyperlinks, indexing, and storing eligible

links in the database.

3 Design and Conception

e Hyperlink Processor Module is responsible for downloading the PDF files, indexing,
and storing the file in the AWS S3 Object Store with their IDs.

3.2.1 Initializer Module
The crawler is initiated by the Initializer, which executes on schedule. Once started, it will

open a connection to the database read all the URLs of all city and put them into the seed

queue.

3.2.2 Website Watcher Module

Function

Website Watcher Module is the component that implements its business logic. It has the
responsibilities to detect the content changes in the webpage and assigns the website with
changes detected to further steps. The purpose of it is to reduce the computational
resources in incremental crawling round after the initial crawling round. The business

logic discussed above can be visualized in Figure 16.

Initial idea

The ideal practice to identify webpage content change is to check the Last-Modified field.
A website might have a Last-Modified field in their HTTP header that contains that date,
and the time at which the origin server believes the resource was last modified. This
content changes would signal that a new document is uploaded in the main page and

added to the lists of building permissions. An example of the Last-Modified field is:
Last-Modified: Tue, 15 Nov 1994 12:45:26 GMT

Problem

However, an empirical study in the set of experiment 50 webpages gave a surprising result
that the Last-Modified field is not always available in the HTTP header of in our
experimental web pages. Because there is no general mechanism of updates, and

notifications, the initial idea cannot be attained in practice.

Solution

A simple workaround solution to this problem can be as follows. The Website Watcher
Module detects changes in a web page’s content by storing a copy the HTML of a
webpage, and then periodically getting the current HTML, and checking it against the
initial HTML. In order to save disk memory, the raw HTML markup will not be stored
directly in the database. The raw content must be first filtered to remove JavaScript

elements, and then the HTML tags are also removed. The filtered HTML markup is then

22

3 Design and Conception

hashed and stored in the database. If the webpage content has recently changed, it will
have a different HTML hash value to its previous hash value.

Trade-off

At first, the initial idea was intended to save computational resources, as the resource
needed to check an HTTP header of a webpage is relatively low. Indeed, the solution
proposed above needs a higher resource than the initial idea. Because it must do the extra
steps to parse the HTML markup and create a hash value. However, it is still acceptable
compared with not having the Website Watcher module. Because parsing and hashing
HTML markup is still cheaper than having to parse HTML code, check up every hyperlink

found in the main page to decide whether they have already existed or not.

Simulate a visit to

the website by
using URL

l

Get page

Hash HTML
last hash

content & [e-mmm e Meta data
compare

A
New
hash
value |

o,
| =
Pass URL link

into queue

\ |

Figure 16: Workflow of Website Watcher Module

Update hash value

3.2.3 Hyperlink Collector

Function
The Hypetlink Collector Module is responsible for parsing and extracting hyperlinks from

the Webpage. It reads the messages in the queue sent from the previous module and

23

3 Design and Conception

processes them individually. The message from the previous module contains the name,

ID of the cities need to be crawled.

Solution

Each message received will be processed with the workflow shown in

Figure 717. Firstly, a GET request is sent to the server to retrieve the HTML content of
the webpage. This HTML markup is then searched for <a> tags, which specifies the
hyperlinks in a HTML content. This was done by parsing the HTML to a parse tree using
a Python Module. With this parse tree, all the tags that are <a> can be extracted. The
second step is to canonize the relative links. For example, such a relative URL

Next page -

will be turned into the absolute link:

Next page In
the relative link, the attribute href only point a directory relative to the webpage, where
the hyperlink locates.

Simulate a wvisit to

the website by

using URL
Get page l
J,' Cannonlize link

Select <a> tag Meta data

erv %
T R oo qnesy .

already stored

Does link

contain

cexwordy

Extract the data

from tag

*
GET-Request and

read the header

h 4 A 4
Store the URL Pass URL link

nto database into queue

Is content-

type PDE?

Bo » End

Figure 17: Workflow of the Hypetlink Collector Module

After being canonized, the href link is then added with a protocol, and domain name so

that the crawler can download the document later. Because it is straightforward to search

24

3 Design and Conception

a PDF embedded in hyperlinks, but hyperlinks extracted from webpages must be
processed and filtered in numbers of ways before being thrown back into the work pool.
For example, the <a> tags can also contain advertisements links, and navigations links,
which are irrelevant. Filtering out documents that are probably not official announcement
before retrieving it into our database reduces the consumed bandwidth and helps the
crawler to be domain specific. The attributes such as text inside the tag is then compared
with a predefined set of rules. If the text inside the tag satisfies all these rules, it will be
passed to the next step, or else, will be filtered out, and marked as invalid. Next, the MIME
type of the URL will be checked to be PDF. If the MIME type proves to be anything else
than PDF, it will be ignored.

Next, the URL will be checked if they are already stored in the database. This feature
avoids redundancy of URLs. It makes sure that the URL in the database is unique. Only
URL links that fulfill all these conditions are stored in the database. At last, they will be
passed into another queue that serves as the event source to trigger the next module —

Hyperlink Processor.

3.2.4 Hyperlink Processor Module
Function

Hyperlink Processor is the components to download the PDF file. The advantages of
separating the download task from the HTML parsing task in the Hyperlink Collector
Module is that the crawler runs much faster and requires less bandwidth. This also reduces
the time of the session. Therefore, the crawler will be less likely to be blocked from

performing too many requests in short amount time.

Due to the requirements of the “Baukarte” project, the PDF files have to be stored by
reference and downloaded. The project involves the process of text mining that is shown
in the project concept in Figure 1. Therefore, the PDFs file have to be persistently stored
in our database for further analysis. Moreover, the act of only storing PDF by reference
(storing the URL where the file is located at) has a risk as follows. The file hosted at any
particular URL is subject to change. This might lead to unexpected effects. For example,
if the PDF content is migrated to another location, the URL links might eventually go

missing or is changed to something completely irrelevant.

25

3 Design and Conception

Begin

Meta data

Fetch PDF

4
| log

% Mo Marked failed

Yes

Mark visited
PDF
File i

---------------- Download & Save

Object
Storage

End <

Figure 18: Workflow of Hypetlink Processor

3.2.5 Data Storage
In order to make the web scrapers useful, the ability to store and interact with large
amounts of data is incredibly important. There are two main types of data to store:

metadata and actual PDF documents:

Meta data The meta data stored in this project can be divided into two categories: input
for the crawling process, and the output of the crawling process. The input is the list of
URL seeds. The outputs are the history from the crawling process, indexes of documents
we already have in your S3 bucket. The history of each PDF link crawled has to be stored
to make sure that the crawler only downloads the same PDF once. It is practical to keep
the information in a database. The information has to be queryable so that the links which
have not been downloaded or failed to be downloaded can be found later on. The

database must also handle a lot of insert operation from the crawler.

PDF Documents is the official journal found. The PDF documents need to be indexed
in a way that allows them to be queryable.

3.3 Serverless deployment development

The last step in developing a web crawler is to be able to deploy it into the cloud. The
deployment of a serverless application differs a lot from a self-hosted application’s
deployment. It is an interesting object to examine in order to gain more insights about the
deployment process of a serverless application, which lack both academic resources, and

established practical patterns.

26

3 Design and Conception

3.3.1 Purpose
The term application deployment can have a lot of different meanings depending on the

type of the application. In general, it is the process of release the application from the
development environment to the production environment. In case of a serverless
application, deployment means moving the code from a developer’s repository to a
repository managed by the cloud provider. The source code of a serverless application
consists of two components: the business logic that defines the behavior of the
application, and the resource’s configuration code that defines the properties of the
resources used by the applications such as database, message server, user authentication

server, etc.

3.3.2 Goal
This is the main goal to design a simple, and automated integration, and deployment

pattern both the infrastructure and the actual code are deployed. The automated
integration process should support the early merge of code changes into the master
branch. The automated deployment would minimize the manual errors, and reduce the

time needed.

3.3.3 Concept
First, the common repository should be managed by a version control software. The

source code contains both code for the business logic and the resource’s configurations
of the serverless application. In the build, and deployment stage, a continuous integration
server should support the developer team with the ability to build and deploy to a cloud

environment.

Code/
”””””””””””” Change sets

h 4
Version control (g—F‘ Commit |—P| Push lf
Trigger
v
Remote SO}“CE code Merge from dev to master
repository branch
CI/CD server Txigger N Package, build Upload code to
code cloud environment

Cloud environtment

27

3 Design and Conception

Developers create an isolated branch to work on a new feature. This branch can be
merged into the develop branch for review. After tested, and reviewed the code be pushed
to master branch, where it will trigger the build, and deployment process. This process is
defined in a configuration file conforming to the requirement of the CI platform.

Two separate deployment pipelines are needed: one to deploy the AWS resource’s
configuration code, and one to deploy business logic’s code. This choice was made based
on the following reasons. First, the configuration files of the cloud resources need to be
stored securely. As in this project, the cloud resource’s configuration file will be kept in
an AWS 83 bucket. This method of remote resource storing is safer than storing locally.
Second, once the project is deployed for the first time, it will come into the state of code
iteration, and redeployment. In short, the infrastructure will not need to be changed as
often as the Lambda code and should not be coupled in the deployment of AWS LLambda

code.

28

4 Implementation

4 Implementation

This chapter describes the implementation based on the proposed architecture in the
previous chapter. Section 4.1 presents the overall view of development environment and
technologies, namely frameworks and libraries. Section 4.2 gives details about the

implementation of the core functions as well as the adopted AWS Services. Section 4.3

4.1 Development environment and Frameworks
Development environment

The Python in this project runs under Python 3.6. The application was developed
simultaneously under both Ubuntu 16.04 LTS, and Windows 10 Operating System.

Within the scope of a bachelor thesis, it is practical to use as many as possible “ready-to-
use” technologies, in order to create a prototype fast and testit at a small scale to validate
the initial architecture proposal. Therefore, the following frameworks and library are

extensively used in the implementation:

BeautifulSoup" is a library that makes it easy to scrape information from web pages. It
sits on top of an HTML or XML parser, providing Pythonic idioms for iterating,
searching, and modifying the parse tree. The official docs are comprehensive, easy to read
and provided with practical examples. Beautiful Soup comes with Python 2, and Python
3.

Requests” library is the de facto standard for making HTTP requests in Python. Every
request raised from a web client takes the advantage of Request to communicate with the
server using any one of the HTTP methods i.e., HTPP GET or HTTP POST. It abstracts
the complexities of making requests behind a beautiful, simple API so that the users can

focus on interacting with services and consuming data in the application.

Bot03" is the Amazon Web Services SDK for Python. It enables Python developers to
create, configure, and manage almost all AWS resources from the Python script. Boto3

provides an easy to use, object-oriented API, as well as low-level access to AWS services.

14 https:/ /www.ctummy.com/software/BeautifulSoup/bs4/doc/
15 https://2.python-requests.org/en/mastet/
16 https:/ /boto3.amazonaws.com/v1/documentation/api/latest/index.htmlrid=docs_gateway

29

https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://2.python-requests.org/en/master/
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html?id=docs_gateway

4 Implementation

The code example below how to get the lists of all buckets available in the AWS 83 in

three lines of code.

import boto3
sqs = boto3.resource('s3")

bucket = conn.get_bucket('bucket_name')

4.2 Implementation of the core functions

In section 3.2, the main modules of the crawler are explained in term of function. This
architecture needs to be evaluated by the feasibility, and usability. Therefore, the
architecture was built into a prototype as a proof-of-concept with AWS Services. In
addition, a brief introduction about the critical AWS Services adopted in the
implementation are presented, namely AWS Lambda, SQS, CloudWatch and S3, because
they are the key building blocks of the crawler.

One of the requirements for the implementation was the complete usage of cloud
services, which can be traced back to the requirements in section 3.1. The decision was
made to use build the application completely with Amazon Web Services from the
business logic to database. As being one of the most popular cloud providers, Amazon
Web Services offers a cloud ecosystem including compute, storage, databased, developer
tools, and management tools, which can cover the complete application development life

cycle.

4.2.1 Initializer Module

Figure 19 shows the components of the Initializer Module. AWS CloudWatch has the
ability to set up monitoring, which enables the trigger to get triggered every few minutes
or hours. In particular, Lambda functions can be triggered as a cron via AWS
CloudWatch, by setting the frequency of the cron by entering the interval via the cron
expression. The Amazon CloudWatch Event is the agent to schedule automated actions
that are self-triggered periodically. This event will trigger the Lambda function to retrieve
all cities (URLs of official website) stored in the DynamoDB seeds table and put them
into the SQS queue.

30

4 Implementation

EAWAY AWS Cloud
.
e get all entries DynamoDb

{\ Amazon AWS Lambda Table
Q CloudWatch
P o
l:l D I] TS Amazon
Event riggers Simple Queue

(time-based) Lambda function — Service
9 send messages Queue

Figure 19: Initializer Module implemented with AWS Services

4.2.2 Website Watcher Module

Figure 20 describes how the Website Watcher Module is implemented. A Lambda
function is chained to the SQS of the Initializer Module as a worker. When messages are
pushed into the queue, the queue automatically fires up multiples LLambda Function to
process these messages. Further business logic carried out by Lambda Function includes
retrieving webpage content (HTML) and comparing with the previous hash value stored
in DynamoDB. The webpage that has changed recently will provide a different hash value
to its previous hash value. This will be the factor to decide whether a city (URL) should

be added to the to-be-crawled queue or not. The new hash value is stored in persistent

Storage.
VS AWS Cloud
R AWS
DynamoDb
update WWW
[hash
E]
Amazon AWS Lambda Table
Simple Queue
Service
Eg Amazon
i Simple Queue

triggers Lambda function - Service

Queue &send L
task
2
retrieve
put task
9 website Queue
HTML

Figure 20:Website Watcher Module implemented with AWS Services

31

4 Implementation

AWS DynamoDB is used to store the latest hash value of the webpage along with the
previous hash value. Lastly, the URL of the web page with content changes is sent to the

next SQS queue to be crawled.
4.2.3 Hyperlink Collector Module

SQS queue from the Website Watcher Module acts as an event source that triggered the
Lambda function. AWS LLambda Function executes its code to perform the crawling
process on the pages (URL) it received from the queue. Lambda parses the HTML
content of the web pages and extracts all hyperlinks. Each link has to fulfill a set of rules
to be considered as eligible URL (official announcement). Next, each hyperlink is
classified as new or already existed by querying the DynamoDB table. The links classified
as not already existed will be indexed with a unique identifier and stored in the
DynamoDB table. They will also be sent to AWS SQS Queue as tasks for the next

module.

aws AWS Cloud
S

AWS
DynamoDb

(2]

Check already Table
exists parse website

HTML & collect links

Amazon m AWS Lambda @ Amazon
Simple Queue Simple Queue

Service ._2 Service

A

triggers
v _ Queue
Lambda function put task

Figure 21.Hyperlink Collector Module implemented with AWS Services

4.2.4 Hyperlink Processor Module

The last step of the crawling process is performed by the Hypetlink Processor Module.
AWS Lambda Function opens, and reads the message containing the URL to directly
into the S3 buckets with the unique identifier created in the previous module. The file is
then stored in a bucket AWS S3 Amazon Simple Storage. This ensures that each
document will be saved both as referenced in the AWS DynamoDB table, and stored

persistently in S3 bucket with the same identification.

32

4 Implementation
VWY AWS Cloud
> 3 AWS
= 9 download pdf DynamoDb
| ©
Amazon AWS Lambda update Table
Simple Queue
Service o
sends 1] W
task . Simple
Lambda funct
Queue ambda Tunction __ e Storage (53)
save pdf @
Bucket

Figure 22: Hyperlink Processor Module implemented with AWS Services

4.2.5 Job Queue

A pattern can easily be noticed in the four modules above is the use of AWS SQS to
trigger AWS Lambda function. This is a newly added feature of AWS Lambda, which is
used to improve the parallelism of the crawler. In June 2018, AWS announced that AWS
SQS is added as an event source of Lambda [12]. The SQS trigger can be added via AWS

Lambda Console as shown in Figure 23. Whenever a new message arrives in the queue

the queue will automatically trigger Lambda function.

b

v Designer

CloudWatch Events ﬁ
CloudWatch Logs I & putSeedIinQueue_v1
CodeCommit @ Layers (0)
Cognito S; i
ognito Sync Trigger =Y sqs 5\\" AWS Lambda
DynamoDB = @® Configuration required
Kinesis Add triggers from the list on the left {ﬁ Amazon CloudW
S3
ey Amazon SQS
SNS —
SQs Resources that the functio
Figure 23: SQS as Lambda's trigger on the left hand-side
Advantages

First, and foremost, this design shows a great potential of serverless application. As AWS

will handle all tasks that have to be implemented manually in Lambda function before.

Traditionally, Lambda function has to poll the messages from the queue, wait for the

33

4 Implementation

messages to artrive, process them, and delete them from the queue. With a queue acting
as the broker between data producer, and worker (the durability of the process is on a
reasonably good level. If the worker dies, SQS will hold onto our data, ensuring that it is
possible to reach to it, whenever the workers are back to full health. The other benefit is
also the scalability without additional configuration. AWS will take the responsibility of
scaling up or down the numbers of Lambda functions adapted to the numbers of

messages in the queue, and the predefined limit [13].

© =
call function T 0o
|] -E «3
=
mes age,
o — Emm—
Accar " . 1
message; SQS queue __-_—b*
+ message;
delete message; successful execution
Amazon
Internal
Paller

Figure 24: AWS SQS as trigger for Lambda function

The table below shows the list of queues used in our

Nr | Configuration

Name seed

1 Queue type | Standard

Publisher putseedinQueue

Consumer WebsiteWatcher

Name cityURLqueue

2 Queue type | Standard

Publisher Website Watcher
Consumer Hyperlink Collector
Name pdfURLqueue

3 Queue type | Standard

Publisher Hyperlink Collector

Consumer Hyperlink Processor

Table 1: SQS Queue Configuration

f. Data Storage

The metadata is organized as a JSON tree and structured in a flattened form. For

34

4 Implementation

The AWS 83 was implemented to hold with three buckets. Bucket
iw_bd_demowebcrawler_lambda stores the AWS Lambda deployment packages. Bucket
aws_bd_demowebcrawler_pdf bucket contains the downloaded PDFs file. Bucket
aws_bd_demowebcrawler_tfstate is used to store the tfstate files, which are the

configuration files for AWS resources.

4.2.6 Logs, logging management and billing.

Logs, and logging management are organized with Amazon Cloud Watch. Cloud Watch
gathers detailed information relating to operations of Lambda functions. It also provides
useful metrics, configurable alarm setting to notify stakeholders whenever failing, and

various filters to quickly search for correct log

The statistics are collected on each run of the crawler. AWS Lambda automatically
monitors Lambda function, reporting metrics through Amazon CloudWatch [14].
Lambda automatically integrates with CloudWatch Logs, and pushes all logs from your
code to a CloudWatch Logs group associated with a Lambda function, which is named
/aws/lambda/<function name> [15].

AWS CloudWatch Dashboard was chosen to visualize these metrics. Each metric
mentioned above is shown on an individual chart. The data for the charts was sent directly
from the logs of functions. The Ul of the dashboard can be found in Appendix I. The
dashboard was manually created by choosing the most important metrics of an AWS
Lambda function. This dashboard allows the user to monitor the health of the crawler.

The most important metric is the Error, and Success rate.

AWS using tags to enable the users to categorize AWS Resource and also for AWS billing
reports. Tags were used with each of the web crawler resources to allow reporting using

AWS Console and billing reports

35

4 Implementation

4.2.7 Adopted AWS Services

This section provides a brief introduction about the important AWS Services used in the main
functions, namely AWS Lambda, AWS Simple Queue Service, AWS Simple Storage S3, AWS
DynamoDB, and AWS CloudWatch.

AWS Lambda Function

AWS Lambda'” lets us run the code without provisioning or managing the servers. It lets us
execute the code from few requests to even thousands in a short time, and scales up

automatically as per dem, and. We need to pay as per use and need not pay when the code is

Event Events Services
e B — ‘
source (anything)

Lambda function

not running.

(business logic)

Figure 25: Simplify architecture of a running LLambda function

Configuration
The developers can set up their own configurations including Runtime Environments, Handler
(name of the handler function), Role (IAM Role), and the Timeout.

Code Configuration Triggers Tags Monitoring 0
Runtime Node.js 6.10 ~
Handler Index.handler o
Role Choose an existing role * 0
Existing role lambda_basic_execution * O

Description Hello world function

~ Advanced settings

These settings allow you to control the code execution performance and costs for your Lambda function. Changing your resource
settings (by selecting memory) or changing the timeout may impact your function cost. Learmn more about how Lambda pricing works.

Memory (MB)* ' o
128 MB

Timeout 0 s mn 3 - sec

Y https:/ /docs.aws.amazon.com/lambda/latest/dg/welcome.html

36

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

4 Implementation

Figure 26: Configurations of AWS Lambda Function

a. Runtime — Execution Environment

All the developer needs to do is supply the function code in one of the languages that AWS
Lambda support (current Node.js, Java, C#, and Python).

b. Event source

In AWS Lambda, we can run our code response to events, such as changes to data in an Amazon
S3 bucket, Amazon DynamoDB Table. AWS Lambda is also capable of processing messages in
a standard Amazon Simple Queue Service (Amazon SQS) queue. Lambda polls the queue and
invokes the function synchronously with an event that contains queue messages. Lambda reads
the messages in batches and invokes your function once for each batch. When your function
successfully processes a batch, LLambda deletes its messages from the queue. With this

capability, we can use AWS Lambda, and Amazon SQS build our application at a very low cost.
c. AWS Lambda Console

AWS Lambda Console allows developers to write code directly. A sample “Hello World”
function and its handler are also given to demonstrate the programming model of AWS
Lambda. Through the AWS Lambda Console, the Lambda function can also be invoked for

testing, and the result is displayed directly on the console as seen in

Figure 27: Result after invocation of Lambda function
Billing
AWS Lambda is charged based on the number of requests for the function (incl. test invokes

from the console), and the time the code executes. First million requests a month is free.

37

4 Implementation

Afterward, AWS charges $0.0000002 per request for the total number of requests across all
your functions. For every GB-second used AWS charges $0.00001667 *.

4.3.2.2 AWS SQS

AWS SQS" is the message queuing services provided by AWS that enables asynchronous
communication. AWS SQS follows the producer/consumer paradigm. The producer can be
other AWS Services, which add messages to the queuing services. The consumer subscribes to

the queue can read the message from the queue and process it later.

Configuration

a. Queue type AWS SQS provides two types of queue:

e Standard queue is the default queue type supported by AWS SQS.

e TIFO (First in First out) queue maintains order for delivery of messages. The name of the
queue should have the suffix “.fifo”. It restricts 300 transactions per second and ensures
that messages are delivered exactly once.

b. Default visibility timeout
This parameter is used when the consumer receives the message and processes it so that no
other consumers have that same message. There are two possibilities:

e Once the consumer processes the message successfully, the consumer deletes the message.

e No delete call is been made until the visibility timeout expires, so the message will be
available to receive a call.

c. Message retention period
This parameter is used to retain the message in the queue. After the message retention period
retention has expired, the message will be deleted automatically. By default, the message,

retention period is 4 days and can be extended up to a maximum of 14 days.

Billing

AWS offers Amazon SQS Free Tier for free with 1 million Amazon SQS requests each month.
After that, the pricing for standard queue is $0.40 for 1 Million requests. The pricing for FIFO
queue is $0.05 for 1 Million requests.

4.3.2.3 AWS S3

AWS Simple Storage Services™ (S3) is a highly scalable, and available data object storage, which
allows storing and retrieving all type of data from anywhere on the web. AWS S3 stores data

objects in buckets. A bucket is a logical container used to identify the namespace of data objects.

18 Price by the time of writing
19 https://docs.aws.amazon.com/AWSSimpleQueueSetvice/latest/ SQSDeveloperGuide /welcome.html
20 https:/ /docs.aws.amazon.com/s3/index.html

38

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html
https://docs.aws.amazon.com/s3/index.html

4 Implementation

Folders and subfolders can also be created under the bucket to hold data objects. Every S3 data
object has a unique identifier in form of URL formed by concatenating the followings

components:

http://BUCKET_NAME.s3.amazonaws.com/DATA_OBJECT_KEY
Protocol ‘ Bucket name ‘ S3 endpoint | Object Key

The public can have access to the data object by the URL. Access to each S3 bucket, and object
are granted by, and ACL (Access Control List) which consists a series of up to 100 grants. Each
grant consisting of a grantee, and permissions will control access to specific users or to groups
of users. As per research, AWS §3 is considered as an excellent choice for a large choice of use

cases. It ranges from storage for backups to hosting static websites.
Billing
Billing is calculated based on storage (average), data transfer in, and out, and the number of

requests per month.

Storage - S3 Standard Storage

First 50 TB / Month $0.0245 per GB

Next 450 TB / Month $0.0235 per GB

Over 500 TB / Month $0.0225 per GB

Request — 83 Standard

Data Returned by S3 Select $0.0008 per GB

Data Scanned by S3 Select $0.00225 per GB

PUT, COPY, POST, or LIST Requests $0.0054 per 1,000 requests
GET, SELECT, and all other Requests $0.00043 per 1,000 requests

Data transfer

Data Transfer IN To Amazon S3 From Internet

All data transfer in ‘ $0.00 per GB
Data Transfer OUT From Amazon S3 To Internet
Up to 1 GB / Month | $0.00 per GB

Table 2: AWS S3 Pricing for region eu-central-1 (Frankfurt) at the time of writing

4.3.2.3 AWS CloudWatch

AWS Cloud Watch® enables the monitoring from all AWS resources, application, and services
that run on AWS, so that the developer and administrators can see the metrics and logs from

AWS Resources. In order to call metrics, the following parameter must be defined. Cloud

2 https:/ /docs.aws.amazon.com/ cloudwatch/index.html

39

https://docs.aws.amazon.com/cloudwatch/index.html

4 Implementation

Watch gathers detailed information corresponding to operations of Lambda functions.
Moreover, various filter to search for specifying logs is provided. Figure [?] shows the graphed
metric for AWS Lambda.

Cloud Watch collects logs of AWS Lambda functions, and categories them into separate groups
corresponding to each function called a log group. A log group consists of multiple log

messages.

CloudWatch Metrics:

a. Namespaces: a container for CloudWatch metrics. Metrics in different namespaces are
isolated from each other so that metrics from different applications are not accidentally
aggregated for computing statistics.

b. Metrics: represents a time-ordered set of data points that are published to CloudWatch. It
can be thought of as a variable that we need to monitor, and the data points are the values
of the variable over time.

c. Dimensions: a name or a value pair that uniquely identifies a metric. You can assign a
maximum of 10 dimensions to a metric. Dimension help you design a structure for your
statistics plan.

d. Statistics: are metric data aggregation over time specified by the user. Aggregation are made
using the namespace, metric name, dimensions, and the data point unit of measure within
the time period you specify.

e. Percentiles: as the name suggests, the percentile indicates the relative standing for a value
in a dataset. It helps you get a better understanding of the distribution of your metric data.
Percentile are used to detect anomalies.

f. Alarms: used to initiate actions on your behalf. An alarm monitors a metric over a specified
interval of time and performs the assigned actions based on the value of the metric relative

to a threshold over time.

AWS CloudWatch Logs

CloudWatch Logs allows users to access, monitor, and store log files from all AWS resources.
It offers near real-time monitoring, and developer can search for specific phrases, values or
patterns. Cloud Watch logs are managed services which can be provisioned with no extra

purchase from within an AWS account.
AWS CloudWatch Events

Cloud Watch Events allows users to consume a near real time stream of events when changes
to their AWS environment takes place. These event changes can subsequently trigger

notifications or other actions.

40

4 Implementation

4.3. CI/CD Pipeline

The expected outcome of this section will be an automated CI/CD pipeline from a local
development environment to AWS. This section is organized as follows, the first subsection
will provide a brief introduction to the tools, and technology used in the DevOps pipeline. The
second subsection focuses on DevOps pipeline for AWS Lambda Functions, which are the

main components of our application.

4.3.1 Frameworks, and development environment.

The main technical requirements from the company are the usage of GitLab as a shared code
repository, which is in already in used, and the usage of Terraform to provision AWS resources.

A brief introduction to the tools used in the thesis is provided below.

PyCharm IDE? is an integrated development environment, specifically for the Python
language. PyCharm IDE has a lot of plugins supports a lot of languages used in this project
including Python, HashiCorp Configuration Language (HCL) used to write Terraform
Templates, and YAML file used to define GitLab CI Pipeline. Moreover, PyCharm is also fully

integrated with git, ssh and shell console.

GitLab” is a hosted Git service like GitHub. GitLab provides a stand-alone server that
can be deployed on-premises or in the cloud, and commendably most of the development of
their service product is open source. GitLab in conjunction with Git is the code repository, and
source control management being used at Immowelt AG besides Microsoft Team Foundation
Server (TES). For this reason, Git/Gitlab was undoubtedly chosen in this project considering

our project does not involve with any form of Microsoft’s NET development environment.

GitLab CI/CD* is a continuous integration tool built to use with GitLab. The fundamental
concepts for Gitlab’s approach to CI. Every repository has a single pipeline configuration,
declared in a .gitlab-ci.yml file. Every commit to the repo will trigger a run of this pipeline.
GitLab CI/CD organizes pipelines in stages. A stage consists of one or multiple jobs. The jobs

of a stage are executed concurrently. A consecutive stage is only started if all jobs of the previous

stage finished successfully.
Build Test Staging Production
) buid {7 te () avto-deploy-ma @ aplay t

Figure 28: GitLab CI/CD pipelines

2 https:/ /www.jetbrains.com/pycharm/
2 https:/ /about.gitlab.com/stages-devops-lifecycle/
2 https:/ /docs.gitlab.com/ee/ci/

41

https://www.jetbrains.com/pycharm/
https://about.gitlab.com/stages-devops-lifecycle/
https://docs.gitlab.com/ee/ci/

4 Implementation

GitLab Runner * GitLab CI/CD provides an open source GitLab Runner, an automation
server used to schedule, coordinate, and triggers these tasks. Moreover, GitLab CI/CD also

provides an interactive web application to visualize the deployment process.

Infrastructure as Code IaC is the practice for managing infrastructure by code following the
rise of cloud computing. As it is easy to provision servers, databases, and other infrastructure
with a few buttons click, mistakes can be easily made provision a complex application. IaC
replaces the traditional manual configuration on cloud provider ‘s interface with the practice of
provision and manage IT infrastructure through the use of source code. The configuration files
will be maintained the same as actual code. The AWS — native tool for 1aC is CloudFormation,

Google Cloud, and Microsoft Azure also provide their own implementations.

Terraform

Terraform™ is an Infrastructure as Code (IaC) management tool that helps provision cloud
infrastructures in a declarative way. Terraform by HashiCorp is a multivendor solution that is
gaining momentum, this is also the standard at Immowelt for provisioning infrastructure in the
AWS Cloud. Since the infrastructure is handled as code, IaC needs applying DevOps practices

to version infrastructure code, rolled back in case of a problem.

Terraform uses Terraform configuration files called .tf file to describe infrastructure. These .tf
file is written in HCL (HashiCorp Configuration Language), a human-readable syntax. It can
also be stored remotely, which works better in a team environment. Terraform can be used to
deploy on almost all popular cloud platform such as Amazon Web Services, Microsoft Azure,
Google Cloud, Digital Ocean, etc. Terraform can be installed on any machine both inside, and

outside the cloud.

In order to understand how Terraform work, it is worth first to understand how AWS resources
are managed. AWS provides an interface called application programming interface (API). The
developer can control every resource of AWS over the API. AWS API follows the RESTful
paradigms using the HT'TPs Protocol. Terraform basically makes an API calls on the user behalf
to AWS.

resource

"aws_db _instance" "db" { .
allocated_storage = 10

engine = "mysgl" = 2
instance_class =

"db.t2.micro" . Cg)
name = "mydb" (4 N
username = "admin" HashiCorp

e Terraform

Figure 29: Terraform API call

AWS Cloud

Amazon RDS

3 https:/ /docs.gitlab.com/runner/
%6 https:/ /www.terraform.io/

42

https://docs.gitlab.com/runner/

4 Implementation

4.3.2 AWS Resources deployment pipeline

Project structure

Figure 30 shows the structure of the Terraform project. The project contains the configuration
files (.tf files) for AWS resources and a configuration file for the deployment pipeline (.gitlab-
ciyml). The .tf files define the property of the resource such as AWS SQS, LLambda, IAM
policies, etc. Each type of AWS Resources will be grouped into one .tf file. For examples, four
Lambda functions of the web crawlers will be grouped together in the lambda.tf file. The file
.gitlab-ci.yml describes which tasks should the Gitl.ab CI Server executes. This file is written
follows the convention published by GitLab to ensute compatibility with the GitLab CI/CD

Server.

iw-bd-awslnfrastructure a o~ | tsa 0 Yok 0
Project ID: 12983597
8B Add license 0~ 5 Commits ¥ 1Branch & 0 Tags [328 KB Files
master iw-bd-awsinfrastructure + - History Q, Find file Web IDE > I
[skip ci]) 094b0654
Viét Hoa Nguyén authored 4 minutes ago
B CI/CD configuration ® Add README ® Add CHANGELOG ® Add CONTRIBUTING @ Add Kubernetes cluster
Name Last commit Last update
2 .gitignore firstcommit 1 day ago
@ .gitlab-ciyml [skip ci] fix ci pipeline 4 hours ago
[F iam.tf firstcommit 1 day ago
B lambda.tf [skip ci] 4 hours ago
B main.tf [skip ci] 4 minutes ago
3B outputtf firstcommit 1 day ago
3 sqs.tf [skip ci] 4 hours ago
[@ trigger.tf [skip ci] 4 hours ago
B variables.tf firstcommit 1 day ago

Figure 30: Terraform project repository in GitLab

Version control In this project, Git was adopted to assist the version controlling of the source

code. The code is stored in a remote repository in the GitLab Server.

Deployment Figure 31 shows the workflow of the deployment process. The user made a
change in the source code and commit this change locally to the master branch of the GitLab
Repository. After the local changeset is taken, it then triggers the Gitlab Runner deployment
pipeline. The GitlLab Runner takes the changeset and executes the predefined pipeline with

.gitlab-ci.yml in a linux environment. The .gitlab-ci.yml contains a set command lines based on

43

4 Implementation

Terraform conventions. First, the terraform plan command is executed to transform the .tf files
into an execution plan. Terraform determines which new resources need to be added or which
resource has to be changed. After the execution plan is created, terraform validate command
will ensure that the syntax in the terraform files is correct. At last, the terraform apply command

will create or update the resources according to the execution plans. Lastly, Terraform updates
the state files in the AWS S3 Bucket.

State file management

After the AWS resources were created, their configurations will be saved in a .tfstate” file.
Following the best practice, the terraform backend® is configurated to store the state files of
the resources in an AWS S3 Bucket. AWS 83 allows file versioning, which enables to track any
changes in the configurations. This is also a method to securely store state file than in a local
machine. The state file is a very important file but also very fragile. For example, the state file is
always loaded at the initializing of Terraform to check against any changes in the configuration
file. The lost or unintentional modifications of the states file may result in the inconsistency
between the state managed by Terraform, and the actual state of the resources in the cloud,

which may need a lot of effort to be fixed.

v GIT
: 1. COMMIT Local
GitLab < O oc
(ain)
2. TRIGGER
CI/CD Tool
V WA AWS Cloud
v’
GitLab
RUNNER Terraform Backend
l 3. EXECUTE //' S3 Bucket
..’ 4. UPDATE Terraform Managed
. —> . ’ Resouces (SQS,
T Dy DB, AN
Terraform ynamoDB, AM)

Figure 31: Deployment pipeline for AWS Infrastructure

4.3.3.2 AWS Lambda deployment pipeline

The practices described in below is applicable to all four Lambda functions of the web crawler.

FEach of the LLambda function will have a

27 https:/ /www.tetraform.io/docs/state/
28 https:/ /www.tetraform.io/docs/backends/

44

https://www.terraform.io/docs/state/
https://www.terraform.io/docs/backends/

4 Implementation

Source control
There is a misconception that AWS Lambda is all about a function. However, the additional
components along with the code are also required for local development, debugging, and testing.
First, unit tests and integration tests are still required to validate the logic and prevent regression.
Second, there is a need to call 3 party library. For example, in order to do a secure HTTP
GET requests the Python library requests should be used, rather than being coded from scratch.
Third, all AWS Lambda functions require a source event, and a result end. IAM role or IAM
policies have to be attached to the Lambda function so that Lambda function can connect to
these resources.

Managing all the modules, environment variables, testing suite, and @

credentials for other AWS resources can be challenging. A good,

and well-defined project structure will lay a foundation for

managing these dependencies. With a new project, there are many

ways to organize code. The following structure shown in Error! —

Reference source not found. has worked very well in this project.

All the code is placed into the src/* directory, namely the main.py

script that contains code of interest. The file .gitignore specifies the

requirements. txt

intentionally untracked files, which shouldn’t be commit to the

Figure 32: Project structure of

remote master branch. The file .gitlab-ciyml contains the ¢
AWS Lambda function

configuration for the AWS Lambda deployment pipeline. In

requirements.txt, the dependencies required in the main.py script are listed.

Deployment

The deployment process can be described as follows. First, and foremost, the user makes a
change in the source code and commits this change to his local Git repository. After the code
is reviewed and tested, it can be pushed into the master branch in the remote GitLab repository.
The changes in the master branch in Gitlab trigger the GitLab CI/CD pipeline, which is
defined by the .gitlab-ci.yml file in the project. GitLab Runner will execute the tasks defined in
the .gitlab-ciyml which follows the conventions defined in the AWS documentation for
deploying Python®. The deployment consists of three steps in this case package, build, and
deploy. Package command will install the required modules, and dependencies written in
requirements.txt. Build command means to zip the installed modules together with the Python
source code to create a deployment package. The deployment package is then uploaded to a
predefined AWS S3 Bucket. Package command can be done with pip, a command line tool to
install Python modules. Build, and deploy are done with AWS Cli, a native AWS command line

tool.

2 https:/ /docs.aws.amazon.com/lambda/latest/dg/lambda-python-how-to-create-deployment-package.html

45

4 Implementation

Problem

The biggest problem by deploying an AWS Lambda function with Terraform and AWS S3
Bucket as code repository is that AWS Lambda function managed by Terraform cannot detect
changes in the AWS 83 bucket. Therefore, it will not automatically update the code after the
source code in AWS 83 has been changed. By several experiments, a workaround for this
problem has been discovered. Namely, a trigger is defined in the .gitlab-ci.yml to automatically
redeploy the AWS resource deployment pipeline.

First, an extra attribute must be defined in the Terraform configuration for AWS Lambda
function, namely source code hash. In this case, the source code hash is created form the last
modified timestamp of the AWS S3 object. After the new code has been pushed to AWS S3
bucket, the timestamp will be changed, and will not be similar to the previous hash value. The
next step is to redeploy the AWS resources.

This is a dummy step because there is actually no change to the AWS resources. However, it is
needed to invoke Terraform to apply the changesets from AWS S3 to AWS Lambda functions.
Because, the terraform plan command checks the current configuration in the state file with the
execution plan. It allows checking of current the source code hash against the previous one. If
any dis-integrity is detected between the two values, Terraform will explicitly command AWS
Lambda function to apply the changeset from AWS S3.

-
v GIT % PyCharm
1. COMMIT O Local

GitLab <
(ain
2. TRIGGER
CI/CD Tool
GitLab

RUNNER
N U AWS Cloud
ls. EXECUTE o
4. UPDATE @

Lambda Source Code (S3)

Figure 33: Deployment pipeline - AWS Lambda function

Monitoring of the deployment pipeline

Monitoring of the deployment pipeline can be easily done with the interactive visual interface
of GitLab. If all deployment tasks in the .gitlab-ciyml were successfully executed, the
deployment pipeline is marked as green as success. In case of unsuccessful task, the pipeline

automatically rolls back to its latest stable version.

46

4 Implementation
Viét Hoa Nguyén > iw-bd-awsinfrastructure > Pipelines
All 9 Pending 0 Running 0 Finished 7 Branches Tags
Status Pipeline Triggerer Commit Stages
#68642797 Fmaster -o- 20ebbb3c NN & 00:01:52
final 0020,

#68642424

Pmaster -o- 20ebbb3c
final

N TN
OO0

£ 6 days ago

& 00:01:07
& 6 days ago

Figure 34: Examples GitLab CI Dashboard

47

5. Conclusion

5. Conclusion

5.1 Evaluation
5.1.1 Web crawler

Coverage To ensure the crawler work, the outputs of the web crawlers were examined.
The data retrieved were manually examined to see the coverage of the web crawler. The
coverage is an indication to decide whether the web crawler is able to retrieve all the
documents on the webpages. After the examinations of the S3 object storage, and the
DynamoDB tables showed that the crawler has 100% coverage over the experiment 50

websites.

Duplication Manual examination was performed to ensure that there are no duplications
existing in the database after each re-run of the crawler. The crawler was able to

successfully identify the existing PDF documents.

Hyperlink classification Despite few errors, it is confident to confirm that the crawler
is largely be able to identify the hyperlinks of official journals. It delivered an acceptable
number of mistakes in classifying hyperlinks, which can be fixed manually or automatically
in the text processing step of the “Baukarte” project . This problem is largely based on
the fact that there is no standard in naming hyperlinks. The hard code solution can only

cover a certain case.

Statistic The goal of this thesis is the design, and implementation of a distributed web
crawler. It implements a prototypical web crawler which works as expected and leads to

meaningful results. The resulting experiment statistics is shown in the following table.

Total numbers of seeds/city 50
Total numbers of PDF downloaded 4140
Total cost per run $ 0,45

Tabelle 1: Web crawlet's statistic

48

5. Conclusion

Target-Actual comparison

This prototypical implementation should be considered as a starting point for further

implementations. In order to determine the functionality of the crawler, a simple

comparison between the initial requirements, and the actual implementation was made,

as shown in the following table.

Furthermore, the crawler should be easily written, and debugged

locally.

Target | Actual
The application must be deployed, and run completely on the cloud X X
environment
Automatic deployment pipeline X
The crawler must behave politely, and following the robot.txt rules X
The result of the crawling process must be according the use case:
- Unstructured Data must be stored in the S3 object store X X
- Metadata, logging data must be stored in a relational X X
database
The crawler should be designed, and implemented generically in X X
term of the monitoring of crawling jobs
The interface for monitoring crawling jobs has the following
specification:
- Enables the monitoring following metrics: the number of X
successful, deferred, and failed jobs. Deferred jobs are jobs
that have a temporary error and needs to be relaunched.
- Allows users to keep track of the crawling history: last X
crawling history, crawling schedule plan.
- References to the cost of the crawler history. X X
The programming language of choice should be Python. X X

Table 3: Comparison between target, and actual features

Result

Figure 35 shows the folder structure of the S3 Bucket storing PDF files. Each folder has
a key that is a combination between the city name and the ID of the city in the

49

5. Conclusion

DynamoDB. It allows the bucket to easily be searched via query and is also convenient

for manual search, as city names are human-readable than a series of random numbers.

Amazon 83 > iw-bd-demowebcrawler-pdf

Overview

Permissions Management

Q, Type a prefix and press Enter to search. Press ESC lo clear

Viewing 1 to 50

Name » Last modified = Size v Storage class v
aachen+0800e3da-dd34-5468-84d8-eeb327ee135 - - -
amberg+0800e3da-dd34-5468-84dB-eeb327eed8 - - -

aschaffenburg+0800e3da-dd34-5468-84d8-eeb327ee125 - - -

=
=
=
& augsburg+2b3618cd-1001-5f20-8064-71ecadco8ib3 - - -
B ausburg+0800e3da-dd34-5468-8408-eeb327ee126 - - -
& Dbaden-baden+0800e3da-dd34-5468-84d8-eeb327ee139 - - -
& bayreuth+0800e3da-dd34-5468-84d8-eeb327ee4d

=

bergisch-gladbach+0800e3da-dd34-5468-84d8-eeb327ee12

& berlin+0800e3da-dd34-5468-84d8-eeb327ee127 - | - -

dback (@ English (US)

Figure 35: Screenshot - PDF folders stored in S3 Bucket

Figure 36 presents a closer look to Betlin’s folder contents, which contains the official
journals identified with a unique ID.

Amazon S3 > iw-bd-demowebcrawler-pdf > berlin+0800e3da-dd34-5468-84d8-eeb327ee127

‘ Overview |

Q Type a prefix and press Enter to search. Press ESC fo clear.

Viewing 1to 8
Name + Last modified + Size v Storage class v
[B 257d597¢-7d46-347d-8dBc-d778d6d412¢C.pdf Jun 28, 2019 2:08:39 PM GMT+0200 2.8 MB Standard
[632f8fd3-05aa-3b45-97c8-9be2cBeBedbd pdf Jun 28, 2019 2:08:41 PM GMT+0200 1.9MB Standard
75d3aeb8-62fa-357c-b732-23db0bch56c9. pdf Jun 28, 2019 2:08:44 PM GMT+0200 22 MB Standard
9245232a-5e2¢-3df7-b261-fce3d 1393fd0d. pdf Jun 28, 2019 2:08:40 PM GMT+0200 7.1 MB Standard
a2091065-60c4-327d-b435-10341a72ff04. pdf Jun 28, 2019 2:08:44 PM GMT+0200 1.5MB Standard
[befeca3d-4872-37b2-8606-d2aac592b165.pdf Jun 28, 2019 2:08:39 PM GMT+0200 1.4 MB Standard
[B ©22c2722-0033-3bf0-9945-87258ee1163.pdl Jun 28, 2019 2:08:42 PM GMT+0200 740.5 KB Standard
d10d0dad-9d21-354e-b238-7b9c5iB147¢1.pdf Jun 26, 2019 7:38:.58 AM GMT+0200 22 MB Standard

Figure 36: Screenshot - Content of Berlin's folder

With the same ID, further information about the PDF files can be retrieved from
DynamoDB table as shown in Figure 37.

50

5. Conclusion

Text ~ = = DynamoDB JSON

2 "downloaded" ,

3 "downloaded_on": "2019-06-28T12:08:38.988006",

4 "downloaded_tries_number": @,

5 "full_url": "https://wws.berlin.de/landesverualtungsamt/ assets/logistikservice/amtsblatt-fuer-berlin/abl_2019_26_3781_3956_online.pdf",
6 "link_text": "Download",

7 "parent ualti thitpc: bealia da/laad ltungsamt/logistikservice/amtsblatt-fuer-berlin/",

8 "uuid": ”257d597c*7d46*347d*8d8c*d778d6d412c:”|J

9 "valid"
18 “visited": .

11 "visited on": "2019-86-28T12:08:37.439841"

Figure 37: Json structure - PDF metadata

Limitations

Due to the limited time of the thesis, only a part of the crawler scheduling was done, in
term of self-triggered crawling process once a week. The monitoring of the dashboard
was also partially done in term of monitoring the health of AWS Lambda functions via a
customized AWS CloudWatch dashboard which can be seen in the Appendix K.

A visualized crawling history, and errors couldn’t be implemented due to limited time and
lack of log aggregation functionality in AWS CloudWatch. Lastly, the technical
implementation of the prototype application is lack of detailed database design, which
might affect the efficiency of DynamoDB querying time.

Future improvement

Considering the current state of the thesis some improvements, and features could be
added in the future to further enhance the coverage web crawler. First, the sources of
official journal can be expanded, a lot of municipal council’s websites allow the users to
subscribe to RSS feed to receive newly released official journals per Email. Second, a
large-scale crawling framework can be implemented to cover all of cities in German,
which may require change in the requirement of the programming language. Because most
the powerful framework are written mainly in Java, such as Apache Storm™, Apache
Nutch®, Heritrix™.

A solution for the visualization of crawling schedule, history and tasks would be to use
an AWS ElasticSearch cluster, and pipe the CloudWatch logs into its for processing. Then,
the Kibana interface can be used to quickly look through the logs and do basic log
analytics or log aggregations. LLogs can also be customized with special keywords such as

“failed”, “success”, or “delayed”, which will add some meaning information to the log.

5.1.2 Deployment pipeline

30 https:/ /storm.apache.org/
31 https://nutch.apache.org/
32 https:/ /webatchive.jira.com/wiki/spaces/Heritrix

51

5. Conclusion

The implemented deployment pipeline fulfils the concept presented in section 3.3.3. The
Package, Build, and Deploy are run automatically on commit. In other words, the pipeline
is very user-friendly, as it can be started with a button click. The deployment is fully
scripted with Terraform. CI, and CD pipelines are scripted in combination with GitLab
CI. It also complies with the technology requirements at the company such as Terraform
as 1aC tool, and GitLab CI as CI/CD tool. The execution time of the deployment pipeline
for Lambda function is estimated to be 3 minutes, and for the AWS Resources maximum
2 minutes. The execution time can vary, because the GitlLab Community Runner is shared
between a lot of free users. When the Runner is in high demand, the deployment pipeline
might suffer from delay. Running a self-managed Gitl.ab Runner might solve this delay
problem. However, it is still very attractive considering the cost factor, since the execution

of the deployment pipeline on GitLab Community Runner is free of charge.

Future improvement
The automated testing was not integrated into the deployment pipeline. This limitation
can be resolved by studies of open source testing frameworks. The possible approach can

3

be using a Python Framework called Moto » to create mock AWS Services and not

directly on actual AWS Services.

Technology stack evaluation

Terraform is a not yet mature technologies and is still under development. Its latest
version is 0.12, which means there are still plenty of changes to come in 1.0 version. The
user should think carefully before getting started to rely on Terraform for provisioning
cloud infrastructure. Hidden problem such as updating AWS Lambda function can be

quite cumbersome to work with.

5.2 Conclusion

As proposed, a web crawler for journal officials was built, and successfully crawled with
the experimental set of websites. The web crawler was implemented with a Serverless
architecture using AWS Services, and aided by messages queue to increase the efficiency.
In addition, the aim to implement an automated deployment pipeline was also achieved.
The artifact of this thesis includes the source code of the crawler, deployment pipeline

configuration, and AWS resources’ configurations.

The most interesting knowledge gained over the course of the designing phase is the
understanding of the complexity in developing a distributed system. This gave me a good

chance to gain hand-on experiences with serverless architecture, which is very different

3 https://github.com/spulec/moto

52

https://github.com/spulec/moto

5. Conclusion

from the traditional monolith architecture. Especially, the monitoring of serverless
application has lack of transparency and specialized monitoring tools, which makes it

notoriously hard to debug errors.

It is also worth to emphasize that with the adopting of Serverless Architecture, developers
will have to be involved in DevOps processes that requires additions skills such as IaC

tools, and GitLab CI configurations.

During the work on this thesis, the main challenge was to be able to learn a lot of different
skillsets, and technologies. This required a huge investment in time to be able to work
productive with the completely new tools, because 1 didn’t have any experiences with
them beforehand. Through this thesis, I was able to extend my knowledge about not only
application but also popular topics in cloud computing such as Infrastructure as Code and
DevOps. This couldn’t be achieved without the support of the Immowelt Big Data’s
Team. In conclusion, it was my pleasure to complete my thesis in a very interesting and

practice-oriented way.

53

Bibliography

Bibliography

]

"Immowelt AG," [Online]. Available:
https://www.immowelt.de/immoweltag/wir/index. [Accessed 25 05 2019].

"Axel Springer SE," 12 02 2015. [Online]. Available:
https:/ /www.axelspringer.com/de/presseinformationen/immowelt-und-
immonet-schliessen-sich-zusammen. [Accessed 25 05 2019].

Nunamaker Jr, J. F.; Chen, M,; Purdin T. D. , "Systems development in
information system research," Journal of Management Information Systems, no. 7(3),
pp- 89-106, 1990.

Udapure, T.; Kale. R.; Dharmik, R, ,,Study of Web Crawler and its Different
Types,“ IOSR Journal of Computer Engineering, Bd. 16, p. 4, 2014.

"Gartner Identifies the Top 10 Trends Impacting Infrastructure and Operations
for 2019," 04 12 2018. [Online|. Available:
https://www.gartner.com/en/newsroom/ press-releases/2018-12-04-gartner-
identifies-the-top-10-trends-impacting-infras. [Accessed 28 05 2019].

van Eyk, E.; Tosup, A,; Seif, S. and Thémmes, M., ,,The SPEC Group's
Research Vision on FaaS and Serverless Architectures, in Workshop on Serverless
Computing, Las Vegas, NV, USA, 2017.

35

Stigler, M., Beginning Serverless Computing: Developing with Amazon Web
Services, Microsoft Azure, and Google Cloud, Apress Berkely, 2017.

Roberts, M., ,,Serverless Architectures,” 22 05 2018. [Online]. Available:
https://martinfowler.com/articles/serverless.html. [Zugriff am 29 05 2019].

Chapin, J.; Roberts, M., What is Serverless?, O'Reilly Media, Inc., 2017.

[10] A. W. S. Inc., ,,Amazon Web Services - AWS Well-Architected Lens-Serverless

Application, 11 2018. [Online]. Available:
https://d1.awsstatic.com/whitepapers/architecture/ AWS-Servetless-
Applications-Lens.pdf. [Zugriff am 31 05 2019].

[11] Burns, B., ,,Designing Distributed System,” O'Reilly, Inc., 2018, p. 109.

[12] Hunt, R., ,,AWS Lambda Adds Amazon Simple Queue Service to Supported

Event Sources,” 28 06 2018. [Online]. Available:
https://aws.amazon.com/blogs/aws/aws-lambda-adds-amazon-simple-queue-
service-to-supported-event-sources/. [Zugtiff am 05 2019].

54

Bibliography

[13] Amazon Web Services, Inc., ,,Understanding Scaling Behavior,” [Online].
Auvailable: https://docs.aws.amazon.com/lambda/latest/dg/scaling.html.
[Zugriff am 06 2019].

[14] ,,Using LLambda CloudWatch,” AWS, [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions.html.
[Zugtiff am 31 05 2019].

[15] "Accessing Amazon CloudWatch Logs for AWS Lambda," AWS , [Online].
Available: https://docs.aws.amazon.com/lambda/latest/dg/monitoring-
functions-logs.html. [Accessed 31 05 2019].

[16] Eichmann, D., "The RBSE spider: balancing effective serach against web load,"
in Proceeding of the first World Wide Web Conference, Geneva, Switzerland, 1994.

[17] IDC, "“IDC FutureScape: Worldwide IT Industry 2017 Predictions”,IDC
#US41883016. MA:1D,2016".

[18] Sewak, M.; Singh; S., "Winning in the era of Serverless Computing and
Function as a Service," in 2078 3rd Conference for Convergence in Technology, Pune,
India, 2018.

[19] I. Amazon Web Services
[Online]. Available:
https://boto3.amazon.aws.com/v1/documentation/api/latest/guide/cw-
example-metrics.html. [Zugriff am 03 26 2019].

Getting Metrics from Amazon CloudWatch,*

>

[20] I. Amazon Web Services, ,,AWS Lambda Deployment Package in Python,*
[Online]. Available: https://docs.aws.amazon.com/lambda/latest/dg/lambda-
python-how-to-create-deployment-package.html. [Zugriff am 25 05 2019].

[21] I. Amazon Web Services, ,,How do I build an AWS Lambda deployment
package for Python?,” [Online]. Available:
https://aws.amazon.com/premiumsupport/knowledge-center/build-python-
lambda-deployment-package/. [Zugriff am 25 05 2019].

[22] A. W. S. Inc., ,,Serverless Architecture with AWS Lambda“.

[23] Munns, C., ,,Servetless architecture patterns and best practices,” 2017. [Online].
Auvailable: https://www.youtube.com/watch?v=_mB1]JVIhScs. [Zugtiff am 27
05 2019].

[24] Pant, G.; Srinivasan, P.; Menczer, F., ,,Crawling the Web,* in Web Dynamics,
Berlin, Heidelberg; s.1., Springer Berlin Heidelberg, 2004, p. 4.

55

Appendix

Appendix

Appendix A Architecture of the “Baukarte” Project

Source: Maxim Fridental (Immowelt AG)
Appendix B Official Journal Example
Appendix C “Baukarte” project

Source: Linda Hegewald
Appendix D Initializer Module source code
Appendix E Python source code - Website Watcher Module
Appendix F Python source code - Hyperlink Collector Module
Appendix G Python source code - Hyperlink Processor Module
Appendix H AWS Resources configuration
Appendix I Source code - .gitlab.yml for deploying lambda function
Appendix K Source code - .gitlab-ci.yml file for deploy AWS resources

56

Appendix

Appendix A: “Baukarte Project Architecture”

Crawling
: Manager Crawling f----ece-e-- R R L .
: Jobs Queue : N
: : : : L
: - : ¥ Crawler
: - . Crawler

Crawler

POF Queue [* :

N e Crawler
: Y

PDF Parser PDF Parser PDF Parser

. Dokumenttyp Dokumenttyp Dokumenttyp

N Klassifikator Klassifikator Klassifikator

. I E; I Extraktoren Information-Exiraktoren

N (Geo-Punkt, Geo-Palygon, (Geo-Punkt, Geo-Palygon, (Geo-Punkt, Geo-Polygon,

. Datum, etc) Datum, etc) Datum, etc)

: '

Baukarte-DB Baukare Ul | -

Baukarte
Newsletter Service

E-Mail }-.

57

Appendix

Appendix B: Official Journal Example

Die Stadt Ingolstadt informiert Sie iber
Ihre bestehenden Widerspruchsrechte
bei folgend:

Datenib

1M an Parteien, Wahler-

gruppen und anderen Tragern von Wahlvorschlagen im Zusammen-

hang mit Wahlen und Abstimmungen auf staatlicher und kommunaler

Ebene in den sechs der Wahl oder Abstimmung vorangehenden Mo

natm Hlenu gehoren auch Abstimmungen im Zusammenhang mit
, Vi iden sowie Biirge heiden.

3) Die Klage kann schiiftiich oder zur Niederschrift des Urkundsbeamten
bei der Geschaftsstelle erthoben werden, Die Anschriften lauten:

Bayerisches Verwaltungsgericht Munchen
Postfachanschiift: Postfach 20 , 80005 Minchen
Hausanschrift: Bayerstra3e 30, 80335 Maonchen,

b) Die Klage kann bel dem Bayerischen Verwaltungsgericht Mnnchvn
auch durch g eines n [mit
lifizierter Signatur an dai elektronische Gmlthls und VHwaImn«]s
postfach - www. egvp de - erthoben werden. I)alwl sind dl# der In-

Amtliche Mitteilungen
der Stadt Ingolstadt

Herausgegeben vom Presse- und Informationsarmt
der Stadt Ingolstadt, Franziskanerstr. 7 , 85049 Ingolstadt

NR. 43 MITTWOCH, 24.10.2018

INHALT
Biirgeramt
Bekanntmachung
Bauordnungsamt
Baugenehmigung

w bead]ten hittp://www.vgh. bayem de/verwaltungs

Rechtsgrundlagen: § 50 Abs. 1und 5 des Bund Id (BMG)

Hinweise: Der Widerspruch kann nur bei der Meldebehdrde eingelegt
werden, bei der der alleinige Wohnsitz oder der Hauptwohnsitz (bel
mehreren Wohnungen) besteht.

2. Meld D

gelkl|lsb.)|kLIl/lLdlls.mllagsleIId

Die Klage muss den Kliger, die Beklagte (Stadt Ingolstadt) und den Ge
genstand des Klagebegehrens bElLkllllLll und soll elnen bestimmten
Antrag enthalten. Die zur Tatsachen und Be-
Bescheld soll In Ur-

Presse oder Rundfunk iiber Alters- oder thubllaen

Rechtsgrundlage: § 50 Abs. 2 und 5 BM:

Hinweise: Der Widerspruch gilt im HInhII(k aul Ehejubilien auch fi

di n anderen [h&tfallcn Lebenspar tnes und Isl bel allen Meldebehor
deren 2 Aich Sle mit einer Woh.

mmg (bel mehreren Wohnungen) gnndd(l sind.

M i "
urt Alung von A

Rechtsgrundlage: § 50 Abs. 3 und § BMG

an Adressbuchverlage
in Buchform.

schrift oder In Abs(hrlfl belgell]g! werden. Wenn die Klage schriftlich
oder zur Niederschiift erhoben wird, sollen dieser und allen Schriftsat-
zen Abschriften fiir die ibrigen Beteiligten beigefiigt werden.

e

~ Die Hinlegung elnes Rechtsbehelfs per einfacher Mail st nicht zuge
lassen und entfaltet keine rechtlichen Wirkungen! Nshere Informati-
onen zur n Red nen der
Internetprisenz der Bayerischen Verwaltungsgerichisbarkeit entnom-
men werden (www.vgh.bayern.de)

- Kraft des

hts Ist In erfahren vor den Ver

Hinweise: Der Widerspruch ist bei allen
in deren Zustandigkeitsbereich Sie mit einer Wohnung (bei mehreren
Wohnungen) gemeldet sind.

4 i an das Bund fiir P I
der Bundeswelu. Die Datendbermittlung erfolgt bis 31.3. eines Jahres
{iber Personen, die im ndchsten Jahr volljihrig werden und die deut
sche Staatsangehdrigkedt besitzen.

§58 CAbs. 1 des

Rec (S&)i.v.m.§36
Abs. 2 BMG

Hinweise: Der Widerspruch kann nur bei der Meldebehérde eingelegt
werden, bei der der alleinige Wohnsitz oder der Hauptwohnsitz (bei
mehreren Wohnungen) besteht. Ein etwaiger Widerspruch wird mit
Vollendung des 18, Lebensjahres automatisch geloscht, Widerspriche,
die nach der bisherigen Rechtslage eingetragen wurden, behalten ihre

Gltigkeit.

5, i n Farnili an offentlich-rechtli
the Rellglonsgesilluhallen sofern sie nicht derselben odu keiner
bffentlich-

horige sind der Ehegatte oder l"bLII&pdllll‘! lulnduulnlgs- Kinder

und die Eltern von Kindern, hsrecht gilt

nicht, sofern die Daten fir Zwecke des Steuererhebungsrechts der Je-

zlelllgen offentlich-rechtlichen Religionsgesellschaft ubermittelt wer-
len.

Rechtsgrundlage: § 42 Abs. 1bis 3 BMG

Betroffene haben das Recht, den Datendbermittiungen zu wider

sprechen. Der Widerspruch st an kelne Voraussetzung gebunden und

blamlllnl(l\l begrindet zu werden. Er kann beim Birgeramt der Stadt
[} lat 049 Ingolstadt eingelegt werden.

Falls der Dateniibermittiung nicht widersprochen wurde, werden die
die iten Dater X

Baugenehmigung der Stadt Ingolstadt

(A7.:02668 18 10)
haben/Betreff: Dachgesc u 3. WE
Grundstiick: Ingolstadt, Am Sunder 2
Gemarkung: 2uchering
Flur-Nr: 2144/2

Die Stadt Ingolstadt erteilte z2u 0.a. Vorhaben eine Genehmigung (Be
scheid vom15.10.2018). Geplant ist der Dachgeschossausbau zu einel
diitten Wohneinheit.

Als Bauqmorrnlqungwehmde weist die Stadt Ingolstadt alle benach-
barten q ler 0.a. darauf hin,
dass die 0.a. h Pl terl beim B der
Stadt Ingolstadt, Spitalstr. 3, 1. Stock, Zimmer Ni. 103 (Tel.: 305-2222)
2u den dblichen Geschdftsstunden eingesehen werden konnen. Rechts-
grundlage fir diese Verdffentlichung ist Art. 66 Abs. 2 Satz 4 der Bayeri
schen Bauordnung (BayB0)

Rechtsbehelfsbelehrung

Gegen diesen Bescheld kann Innerhalb elnes Monats nach selner Be-
kanntgabe Klage bel dem Bayerischen ht Monchen

richten gl hein huss zu entrichten.

Bekanntmachung im Rahmen der

- Widmung
~Erhebung Kostenerstattunasbetrag

IV Zentralklaranlage Ingolstadt
Offentliche Ausschieibung

Sparkasse Ingolstadt-Eichstatt
Aufgebot von

u. sonstigen

Berichtigung des
Widmung eines Teilstiickes einer Ort

Das in der Stadt berl; elegene Teil
stick der Straie Alball Belg Stafe”, wird laut Ldgeplan als Ortssalie
Sffentlich gewldmu

Die Widmungsverfiigung kann bei der Stadt Ingolstadt, Technisches Rat-
haus, Zimmer 402, im 4. Stock, eingesehen werden.

Widmung eines beschrankt-offentlichen Weges

Der In der Stadt Ingolstadt, Regierungsbezitk Oberbayern, gelegene Weg
wlrd laul Lageplan als Gehweq gewidmet,

fiigung kann bel der Stadt Ingolstadt, Technisches Rat

erhoben werden. Dafir stehen folgende Maglichkeiten zur Verfiigung:

haus Zimmer 402, Im 4. Stock, eingesehen werden.

hoh

eines K
Die Ausgleichs- und ErsatzmaBnahmen fiir Eingriffe in Natur und Land-
schaft fiir das Gebiet des Bebauungsplanes Ni. 145 H Niederfeld” wurden
abgeschlossen,

Betroffen sind die baulich nutzbaren Grundstiicke am Plunderweg von
FLNL 714/19 bis Wendehammer,

Gem3R Baug und der Kostener werden
daher fiir 0.9. Manahmen Kostenerstattungshetrage erhoben, sobald die
Voraussetzungen fiir die Verteilung des Aufwandes vorliegen.

oOffentliche Ausschreibung

Der Zwe: 1, Am Mailinger Moos 145,
85055 Ingolstadt beabsichtigt folgende Leistung nach VoL /A 7u vergeben:
Verwertung und Transport von kommunalem
Klarschlamm Nr. ZKA-020-2018
Einreichungstermin: 06.11.2017 um 24:00 Uhr, Ausfiihrungsort: Ingolstadt
Abwicklung der Ausschrelbung tiber das Baureferat, Spitalstr, 3, 85049 In-
qolstadt Tel. (0841) 305-2446, Fax (0841) 305-2447, E-Mall: vergabe@inqgol-
stadt.de Auskiinfte zur Ausschrelbung dber die Vergabeplattform www.

vergabe.bayern.de

Aufgebot von Sparkassenbiichern
und sonstigen Sparurkunden

Gemak Art. 35 und 36 AGBGB wird hiermit auf Antrag der nachstehend
aufgefilhiten Antragsteller der Inhaber ds/der jeweiligen Sparkassenbu
ches/Sparurkunde aufgefordert, seine Rechte unter V orlegung der Ur
kunde binnen drei Monaten bei der Sparkasse Ingosltadt Cichstatt anzu-
melden. Wird die Urkune innerhalt dieser Frist nicht vorgelegt, so wird das
Jewellige Sparkassenbuch/die jeweilige Sparurkunde durch Beschluss des
Vorstandes fir kraftlos erklart.

Antragsteller

Urkumlonnummw
Sibel Temel 3165

342050

58

Appendix

“Baukarte” Project

.
.

Appendix C

ywisad Surppng

“JIBYUIBUYOM USNLP
J3U1B NZ NeqsnessolPsabipeq Jap 1s1 Juejdan “(8LOZ'OL'SLWOA pIaLs
-ag) bunbiwyauan auta uaqeylop Lo nz Y 1pejsjobul 1peis aig

Zfvvie
bupaynz
Z Japuns wy “ipeisjobuy

FIN-IN
:bunylewan
Spmspung

IM "€ NZ NeqsnessoPsaBbPeq :}ja11ag/uaqeyon

(oL 81 89970:°2v)

peisjobuj 1pe)s 1ap bunbiwyauabneg

reusnol [eRy;O

©
¢ £
BuUnBiur2ua6eq TNEGIBWN OV FIMOUALY I P £ XIBASOPION
sqe N
A pith £ Y1RdISOPION ¢
OV liemoww| nequin
. «
B1oqunN 'G YiedisopIoN 64021020 WoA .858130"
«..v86097
nl n R
BunBwysusbneg & il
~ ‘.6 assEaISIPEIS,
=)
%®
+8]
}
) 1 ¢ usssoupe,
() ussomuy Sundy teursaos .
8 *.3TouuTaUYOM *€ nZ 0 neasny, i ,zJmi Bunqrasyasa,
e usmyeussew,
L snTy>saqunaep
.uay>TazURINe,
¢.4pd" 6116330 Tqs3ue,/0p "B aquanu WA/ / :d33Y,, T .Tdn,
“.1609L€2pS, ¢ .QIudyEUSSEY,
ey
A
BIOQUIN LLp06 ‘€ WiedisopioN ==
G 1510 own
= nasmzs & ol
(o]

‘,ﬂwmu_ovovc_ 1pels Jap
uabunpiaw ayPdIpwy &

59

OCoONOODULID WN -

PP, P PP, PEDPPWWWWWWWWWWNNNNNNNNNNRPRRPRRERRRERRRRPR
O, WNRERPRPOOUONOODUP,WNRERPRPOOONOOTUDRRWNREROOOONOUPE WNEREO

Appendix

Appendix D: Initializer Module

import boto3

session = boto3.Session(region_name="xxxxx’,
aws_access_key_id="xxxxx’,
aws_secret_access_key="xxxxx’)

class DynamoDBUtils:
def init_ (self,tableName):
self.tableName= tableName
self.conn = session.resource("dynamodb’)
self.table = self.conn.Table(self.tableName)

def getallltemsID (self):
res = self.table.scan()
id_list = [item['ID'] for item in res|['Items']]
return id_list

def getallltemsID, andURL(self):
res = self.table.scan()

id_list = [(item['ID"],item["url'],item['name']) for item in res|['Items']]

return id_list

def send_message_to_queue (id, url,name):
session.client('sqs').send_message(
QueueUtl = "https:/ /sqs.eu-central
l.amazonaws.com/419206837402/seeds_v1",
MessageBody=str(url),
MessageAttributes={
'ID":{
'DataType':'String’,
'StringValue': str(id)
;

'Name": {
'DataType': 'String’,
'StringValue': str(name)
h
h

)

def main(event,context): # Lambda Handler
Create endpoint to DynamoDB Table
utils = DynamoDBUtils("seeds")
id_list = utils.getallltemsID, andURL()

for id,utrl,name in id_list:
send_message_to_queue(id,url,name)

60

OCoONOODULID WN -

U b DB PA,DPEPEPEPAEPPEEPWWWWWWWWWWNNNDNNNNNNNRRRERPRRRRRRPR
PO UOVWOONOCUPWNRPRPROOONOUPWNERPOOONOUUPA,WNREROOONOOUPEDE WNREO

Appendix

Appendix E: Website Watcher Module

import hashlib

import boto3

from bs4 import BeautifulSoup as bs
import requests

from datetime import datetime

session = boto3.Session(region_name="xxxxx’
aws_access_key_id="xxxxx’,
aws_secret_access_key="xxxxx’

b

class websiteHasher:
def init_ (self,url_id,url to_hash,name):
self.url_id = url _id
self.url to_hash = url to_hash
self.city_name= name

def generateHash(self):
try:
cleanedHTML = HTMLSelector(requests.get(self.url_to_hash).text).selectText()
return hashlib.sha224(cleanedHTML).hexdigest()
except requests.exceptions.ConnectionError as e:
return None

def getlastHash(self):

conn = session.resource('dynamodb’)
table = conn.Table('seeds")
print(self.url_id)
res = table.get_item(

Key={

'"ID": str(self.url_id)

b

)

return res['Item']['lastHashValue']

def updateHash(self,new_hash_value):
conn = session.resource('dynamodb’)
table = conn.Table('seeds")
table.update_item(
Key={
'ID": str(self.url_id)
5
UpdateExpression=""SET lastHashValue = :varl, lastModified= :var2",
ExpressionAttributeValues={
"'varl': new_hash_value,
"var2': str(datetime.now().date())

}
)

def compareHash(self):
lastHashValue = self.getlastHash()
currentHashValue = self.generateHash()

61

Appendix

52 if lastHashValue |= None:
53 if currentHashValue |= lastHashValue:
54 self.updateHash(currentHashValue)
55 self.send_message_to_queue()
56
57 def send_message_to_queue (self):
58 session.client('sqs').send_message(
59 QueueUtl = "https://sqs.eu-central-
60 | l.amazonaws.com/419206837402/cityURLqueue_v1',
61 MessageBody=str(sclf.url_to_hash),
62 MessageAttributes={
63 'parent URL_ID":{
64 '"DataType':'String’,
65 'StringValue': str(sclf.url_id)
66 s
67 '"Name': {
68 'DataType': 'String’,
69 'StringValue': str(sclf.city_name)
70 3
71 }
72)
73
74
75 | class HTMLSelector:
76 def __init_ (self,html):
77 self.html = html
78
79 """'Select only the javascript, and styles in the html document'"'
80 def select]avascript(self):
81 soup = bs(self.html,features="html.parser")
82 return [x.extract() for x in soup.findAll(['script’,'style'])]
83
84 def selectText(self):
85 soup = bs(self.html,features="html.parser")
86 for x in soup.findAll(['script','style']):
87 x.decompose()
88 text = soup.get_text()
89 # break into lines, and remove leading, and trailing space on each
90 lines = (line.strip() for line in text.splitlines())
91 # break multi-headlines into a line each
92 chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
93 # drop blank lines
94 text = "\n'join(chunk for chunk in chunks if chunk)
95 # encode text
96 return text.encode('utf-8")
97
98
99 | deflambda_handler(event, context):
100 for record in event['Records']:

62

101
102
103
104
105
106

Appendix

url = str(record|'body'])

payload= record['messageAttributes']
id= payload['ID']['stringValue']
name= payload['Name']['stringValue']
hasher = websiteHasher(id,url,name)
hasher.compareHash()

63

OCoONOODULID WN -

AP DD PP PAPPEPPEPDPHPWWWLWWWWWWWWNNNDNNDNNNNNRERRRERPRRRERRRRPR
NoubhbwWNREPOOONODUUPA,WNRPRPROOVONOOCTUDWNREROOONOUPE WNEREO

Appendix I

Appendix F: Hyperlink Collector Module

from bs4 import BeautifulSoup

import requests

import hashlib

from urllib.parse import urljoin

import boto3

from boto3.dynamodb.conditions import Key
from datetime import datetime

from botocore.exceptions import ValidationError
from uuid import uuid3, NAMESPACE_URL

Hentrypoint to AWS

session = boto3.session.Session(region_name='"eu-central-1',
aws_access_key_id="xxxxxx',
aws_secret_access_key= xxxxxx')

class Hyperlink_Collector:
def __init_ (sclf,parent_url,parent_url id,city_name):
self.db = session.resource('dynamodb")
self.sqs = session.client('sqs")
sclf. parent_url_id= parent_url_id
self.parent_url = parent_url
self.city_name=city_name

def getPage(self):
try:
s = requests.Session()
req = s.get(self.parent_url)
return BeautifulSoup(req.text, features="html.parser")
except requests.exceptions.RequestException:
return None

def isAbsoluteLink(self, link):
if str(link).startswith(""http: / /") or str(link).startswith(""https://"):
return True
return False

def resolveRelativeURL(self,parent_urlurl):
return urljoin(parent_url,url)

def create_uuid (self,utl):
parent_url_enc = self.parent_utrl.encode('utf-8")
url_enc = url.encode('utf-8")
hashtring = parent_url_enc + url_enc
url_id = hashlib.md5(hashtring).hexdigest()
return url_id

def create_uuid3(self,url):

64

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

Appendix I

uuid= uuid3(NAMESPACE_URL, url)
return str(uuid)

def insert_hyperlink(self,urllink_text,url_id):
self.db. Table("urlsList").put_item(
Ttem= {
"downloaded': False,
"downloaded_on'": "None",
"full_url": str(utl),
"parent_url":str(self.parent_utl),
"link_text'"": str(link_text),
"valid": True,
""visited": False,
"visited_on": "None"",
"downloaded_tries_number":0,
"uuid"": str(url_id)
}
)

def mark_error (self):
self.db. Table('seeds").update_item(
Key={
'ID": self.parent_url_id,
3
UpdateExpression=""SET valid=:varl, history=:var2",
ExpressionAttributeValues={
"svarl': False,
":var2': str(datetime.utcnow().isoformat())+': '+' unable to get page
5>
)

print('unable to get page:' + sclf.parent_url)

1

def send_message_to_queue(self, url, url_id):
self.sqs.send_message(
QueueUrl="https:/ /sqs.eu-central-
l.amazonaws.com/419206837402/pdfURLqueue_v1",
MessageBody=str(utl),
MessageAttributes={
'ID": {
'StringValue': url_id,
'DataType': 'String'
}s
'parent_URL_ID":{
'StringValue': sclf.parent_url_id,
'DataType': 'String’
}s
'parent_URL':{
'StringValue': sclf.parent_url,
'DataType': 'String’

65

Appendix I

97 >
98 'cityName": {
99 'StringValue': self.city_name,
100 'DataType': 'String’
101 }
102 }
103)
104 print(str(utl)+'":is added to queue')
105
106 # CHECK IF URL ALREADY EXISTS IN TABLE
107 def isURLDupilcate(self, url):
108 table= sclf.db.Table("urlsList")
109 res = table.query(
110 KeyConditionExpression=Key('parent_url").eq(str(sclf.parent_utl)) &
111 | Key('full_url").eq(str(utl))
112)
113 return True if len(res['Items'])!=0 else False
114
115 # CHECK IF URL POINTS TO PDF FILE
116 def is_ PDFFile(self,url):
117 try:
118 h = requests.head(url, allow_redirects=True)
119 header = h.headers
120 content_type = header.get('content-type")
121 if ('pdf' in content_type) or ('PDF' in content_type):
122 return True
123 except requests.exceptions.RequestException:
124 return False
125
126 # SAVE CRAWLING HISTORY
127 def mark_last_crawled(self):
128 self.db. Table('seeds").update_item(
129 Key={
130 'ID": self.parent_url_id,
131 1,
132 UpdateExpression=""SET #st =:varl",
133 ExpressionAttributeValues={
134 "wvarl": str(datetime.utcnow().isoformat())
135 1,
136 ExpressionAttributeNames= {
137 '"#st':'last_crawled'
138 }
139)
140
141 def collect(self):
142 e
143 Searches a given website for all links related to Amtsblatt, and records all pages found
144 e
145 soup = self.getPage()

66

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

Appendix I

if soup is not None:
for link in soup.findAll("a"):
text = str(link.getText().strip())
href = str(link.get("href"))

if sclf.isAbsoluteLink(href) is not True:
href = self.resolveRelativeURL(sclf.parent_urlhref)

if sclf.is_ PDFFile(href) :
if self.isURLDupilcate(href) is False :
print(href)
doc_id= self.create_uuid3(href)
self.insert_hyperlink(href, text,doc_id)
self.send_message_to_queue(href,doc_id)
self.mark_last_crawled()

def main(event,context):

print(event)

for record in event|['Records']:
utl = str(record['body"])
payload = record['messageAttributes’]
cityURL_id = payload['parent URL_ID'|['stringValue']
city_name = payload['Name']['stringValue']
collector = Hyperlink_Collector(url,cityURL,_id,city_name)
result= collector.collect()
if result is False:

pass

67

OCooNOODULLEE WN -

AP PP PAEPDPEPPEPDPDPWWWLWWWWWWWWNNNNNNNNNNRRRRRRRERRRR
NoudbhwNRPOOUONODUPAWNRPROOONOOCUPWNPROOONOUPWNEDO

Appendix G

Appendix G: Hyperlink Processor Module

import requests
from datetime import datetime
from boto3.dynamodb.conditions import Attr

import boto3

session = boto3.session.Session(region_name='eu-central-1'
aws_access_key_id="xxxxxx',

b

aws_secret_access_key="xxxxxx'

)

class Hyperlink_Processor:
def _init_ (selfjid,url,parent_url_id,parent_url,city_name):

self.db=session.resource("dynamodb’)
self.s3=session.resource('s3")
self.id=id
self.parent_url_id= parent_url_id
self.url=url
self.parent_url=parent_url
self.city_name=city_name

def get_pdf(sclf):
try:
req = requests.get(sclf.url,stream =True)
return req.content
except Exception as e:
return e

def put_object (self,content):
try:

object= sclf.s3.0Object('iw-bd-demowebcrawler-

pdf' str(self.city_name)+'+'+str(self.parent_url_id)+'/"+str(self.id)+".pdf")

res= object.put(Body=content)

print(res)

self.mark_downloaded))
except Exception as e:

return e

def mark_visited(self):
self.db. Table("urlsList").update_item(
Key={
'parent_url'": str(self.parent_url),
'full_url": str(self.url)

5

UpdateExpression=""SET visited=:varl, visited_on=:var2",

ExpressionAttributeValues={
"wvarl': True,

68

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

Appendix G

"wvar2":str(datetime.utcnow().isoformat())

}
)

def mark_downloaded(self):
print(datetime.utcnow().isoformat())
self.db.Table('urlsList").update_item(
Key={
'parent_url": self.parent_url,
'full_url": self.url
5
UpdateExpression=""SET downloaded=:varl, downloaded_on=:var2",
ExpressionAttributeValues={
":varl": True,
":var2': str(datetime.utcnow().isoformat())

3
)

def visit(self):
self.mark_visited()
content = sclf.get_pdf()
self.put_object(content)

def main(event,context):

print(str(datetime.utcnow().isoformat()))

for record in event|['Records']:
url = str(record['body"])
payload = record|'messageAttributes’]
parent_id= payload['parent_URL_ID'"|['stringValue']
parent_utl = payload['parent_URL'|['stringValue']
city_name= payload|'cityName']['stringValue']
id= payload['ID'|['stringValue']
processor = Hyperlink Processor(id,utl,parent_id,parent_utl,city_name)
processor.visit()

69

OCoONOOTULLDE WN PR

PP, DDA, PP WWWWWWWWWWNDNNNNNNNNNRPRRPRRPRRRRRPR
O WNRERPRPOOONOUUPMWNREPRPOOUONOOTUPAWNREROOONOUPDWDNEDO

Appendix G

Appendix G: AWS resources configuration files

iam.tf

resource "aws_iam_role" "example_lambda" {
assume_role_policy = <<EOF
{

"Version": "2012-10-17",
"Statement": |
{
"Effect": "Allow",
"Principal": {
"Service": "lambda.amazonaws.com"

}’ n.n

"Action": "sts:AssumeRole"

resource "aws_iam_role_policy_attachment" "example_lambda" {

policy_arn = "${aws_iam_policy.example lambda.arn}"
role = "${aws_iam_role.example_lambda.name}"

}

resource "aws_iam_policy" "example_lambda" {

policy = "${data.aws_iam_policy_document.example_lambda.json}"
b

" "example_lambda' {

data "aws_iam_policy_document
statement {
sid = "AllowSQSPermissions"
effect = "Allow"

resources = ['"arn:aws:sqs:*""]

actions = |
"sqs:ChangeMessageVisibility',
"sqs:DeleteMessage'",
"sqs:GetQueueAttributes',
"sqs:ReceiveMessage",

|
}

statement {
sid = "AllowlnvokingLLambdas"
effect = "Allow"
resources = ["'arn:aws:lambda:eu-central-1:*:function: *'"]
actions = ["lambda:InvokeFunction"]

}

70

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

OCooONOODULLDE WN R

NNNNNNNNNNRRRPRRRERRRR R
OO NOAOUBRWNRPOWOVONOOUDWNERO

Appendix G

statement {
sid = "AllowCreatingLogGroups"
effect = "Allow"
resources = ["'arn:aws:logs:eu-central-1:%*:*"]
actions = ["logs:CreateLogGroup"]
b
statement {
sid = "AllowWritingLogs"
effect = "Allow"
resources = ["arn:aws:logs:eu-central-1:*:log-group:/aws/lambda/*:*"]

actions = |
"logs:CreateLogStream",
"logs:PutLogEvents',

]
}
}

main.tf

provider "aws" {
region = "eu-central-1"
access_key = ""${var.aws_access_key}"
secret_key = ""${vzr.aws_secret_key}"

}

BUCKET FOR TERRAFORM STATE
resource "aws_s3_bucket" "iw-bd-demowebcrawler-pdf" {

bucket = "iw-bd-demowebcrawler-pdf"

acl = "private"

tags = {

Application=""iw-bd-demowebcrawler"

H

H

main bucket for Lambda function
resource "aws_s3_bucket" "iw-bd-demowebcrawler-lambda" {
bucket = "iw-bd-demowebcrawler-lambda"

acl = "private"

tags = {

Application=""iw-bd-demowebcrawler"

H

§

DEFINE THE REMOTE REPOSITORY FOR THE .TFSTATE FILE
terraform {
backend "s3" {
bucket = "iw-bd-demowebcrawler-state"
key = "tfstate/terraform.tfstate.json"

71

30
31
32

OCooNODULLEE WN -

P A DADWWWWWWWWWWNNNNNNNNNNRRRPRRERRRERRRRR
RWNROOONOURNRWNROOVONONONTUITDN WNRPOOLONOOTU DA WNERO

Appendix G

region = "eu-central-1""

b
}

lambda.tf

data "aws_s3_bucket_object" "putSeedInQueue_sourcehash' {

bucket = "iw-bd-demowebcrawler-lambda"
key = "putSeedInQueue/putSeedInQueue.zip"

}

resource "aws_lambda_function" "putSeedInQueue" {

function_name = "putSeedInQueue_v1"

role = "${aws_iam_role.example_lambda.arn}"
h, andler = "main.main""
runtime = "python3.6"

s3_bucket = "iw-bd-demowebcrawler-lambda"

s3_key = "putSeedInQueue/putSeedInQueue.zip"

source_code_hash =
"${base64sha256(data.aws_s3_bucket_object.putSeedInQueue_sourcehash.last_
modified)}"

timeout = 120

memory_size = 128

tags = {

Application=""iw-bd-demowebcrawler"

H

H

data "aws_s3_bucket_object" "websiteWatcher_sourcehash" {
bucket = "iw-bd-demowebcrawler-lambda"
key = "websiteWatcher/websiteWatcher.zip"

"

}

resource "aws_lambda_function" "websiteWatcher" {

function_name = "websiteWatcher v1"

role = "${aws_iam_role.example_lambda.arn}"
h, andler = "main.lambda_h, andler"

runtime = "python3.6"

s3_bucket = "iw-bd-demowebcrawler-lambda"

s3_key= "websiteWatcher/websiteWatcher.zip"

source_code hash =
"${base64sha256(data.aws_s3_bucket_object.websiteWatcher_sourcehash.last_m
odified)}"

timeout = 120

memory_size = 128

tags = {

Application
}

="iw-bd-demowebcrawler"

}

72

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

w N

Appendix G

data "aws_s3_bucket_object" "hypetlinkCollector_sourcehash" {
bucket = "iw-bd-demowebcrawler-lambda"
key = "hyperlinkCollector/hyperlinkCollector.zip"

}

resource "aws_lambda_function" "hyperlinkCollector" {

function_name = "hyperlinkCollector_v1"

role = "${aws_iam_role.example_lambda.arn}"

h, andler = "hyperlinkCollector.main"

runtime = "python3.6"

s3_bucket = "iw-bd-demowebcrawler-lambda"

s3_key= "hyperlinkCollector/hypetlinkCollector.zip"

source_code_hash =
"${base64sha256(data.aws_s3_bucket_object.hyperlinkCollector_sourcehash.last
_modified)}"

timeout = 300

memory_size = 128

tags = {

Application
H

="jw-bd-demowebcrawler"

}

data "aws_s3_bucket_object" "hypetlinkProcessor_sourcehash" {
bucket = "iw-bd-demowebcrawler-lambda"
key = "hyperlinkProcessor/hyperlinkProcessor.zip"

}

resource "aws_lambda_function" "hyperlinkProcessor' {

function_name = "hyperlinkProcessor_v1"

role = "${aws_iam_role.example_lambda.arn}"
h, andler = "hypetlinkProcessor.main"

runtime = "python3.6"

s3_bucket = "iw-bd-demowebcrawler-lambda"

s3_key= "hyperlinkProcessor/hypetlinkProcessor.zip"

source_code_hash =
""${base64sha256(data.aws_s3_bucket_object.hyperlinkProcessor_sourcehash.last
_modified)}"

timeout = 120

memory_size = 128

tags = {
Application=""iw-bd-demowebcrawler"
b
;
sqs.tf

CLOUDWATCH EVENT TO EXECUTE THE APPLICATION EVERY SUNDAY AT 13:00
resource "aws_cloudwatch_event_rule" "everyday_rule" {
name = "start_crawler_trigger"

73

O 00N O Ul b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

Appendix G

description = "schedule events for crawler"

depends_on = ["aws_lambda_function.putSeedInQueue']

schedule_expression = "cron(0 0 13 ? * SUN *)"

tags ={
Application

h

="iw-bd-demowebcrawler"

}

ATTACH THE EVENT TO PUTSEEDSFUNCTION

resource "aws_cloudwatch_event_target" "start_crawler" {

rule = "${aws_cloudwatch_event_rule.everyday_rule.name}"
arn = "${aws_lambda_function.putSeedInQueue.arn}"
target_id = "putSeedInQueue"

}

resource "aws_lambda_permission" "start_crawler_per" {

statement_id = "AllowExecutionFromCloudWatch"

action = "lambda:InvokeFunction"

function_name = "${aws_lambda_function.putSeedInQueue.function_name}"
principal = "events.amazonaws.com"

source_arn = "${aws_cloudwatch_event_rule.everyday_rule.arn}"

}

EVENT SOURCE MAPPING BETWEEN SQS, AND LAMBDA QUEUE ->
WEBSITEWATCHER

resource ""aws_lambda_event_source_mapping" "

endpoint_seeds_queue" {

batch_size =1
event_source_arn = ""${aws_sqs_queue.seeds_vl.arn}"
enabled = true

function_nhame =
"${aws_lambda_function.websiteWatcher.function_name}"

}

EVENT SOURCE MAPPING BETWEEN SQS LAMBDA CITYURLQUEUE ->
HYPERLINKCOLLECTOR
resource "aws_lambda_event_source_mapping" "endpoint_cityURLQueue" {
batch_size =1
event_source_arn = "${aws_sqs_queue.cityURLqueue_vl.arn}"
enabled = true
function_name =
"${aws_lambda_function.hyperlinkCollector.function_name}"

}

EVENT SOURCE MAPPING BETWEEN SQS LAMBDA PDFURLQUEUE ->
HYPERLINKPROCESSOR
resource "aws_lambda_event_source_mapping' "endpoint_pdfURLQueue" {
batch_size =1
event_source_arn = "${aws_sqs_queue.pdfURLqueue.arn}"

74

53
54
55
56

OCoONOOTULDE WN R

AP, P D WWWWWWWWWWNNNNMNNNNNNNRRRPRRPRRERPRRRRPR
W NP OOVONOOTUP,WNPRPRPROOONOOTULPWNREROOOONOOUPEA WNEO

Appendix G

enabled = true
function_name =
"${aws_lambda_function.hyperlinkProcessor.function_name}"

;

trigger.tf

resource "'aws_sqs_queue' "seeds v1" {
name = "seeds_v1"
tags = {

—n

Application=""iw-bd-demowebcrawler"

}
visibility_timeout_seconds = 150
message_retention_seconds = 345600

max_message_size = 262144
delay_seconds =0
receive_wait_time_seconds =0
redrive_policy = <<POLICY

{

"deadLetterTargetArn": "${aws_sqs_queue.seeds-deadletter.arn}",
"maxReceiveCount": 5

;
POLICY

}

resource "aws_sqs_queue'" "seeds-deadletter" {
name = ""seeds_deadletter"
max_message_size = 262144 #250kb
message_retention_seconds = 1209600 #74 days
visibility_timeout_seconds =90
receive_wait_time_seconds = 20
tags = {

Application=""iw-bd-demowebcrawler"

H

H

resource 'aws_sqs_queue
—_n

"nn

cityURLqueue_v1" {

name cityURLqueue_v1"

tags = {
Application=""iw-bd-demowebcrawler"

}

visibility_timeout_seconds = 180
message_retention_seconds = 345600

max_message_size = 262144
delay_seconds =0
receive_wait_time_seconds =0
redrive_policy = <<POLICY
{

"deadLetterTargetArn": "${aws_sqs_queue.cityURLqueue-deadletter.arn}",
"maxReceiveCount": 3

75

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

Appendix G

}

POLICY

resource "aws_sqs_queue' "cityURLqueue-deadletter' {

name = "'cityURLqueue_deadletter"
max_message_size = 262144 #250kb
message_retention_seconds = 1209600 #74 days

visibility_timeout_seconds = 300

receive_wait_time_seconds = 20
tags = {
Application

="jw-bd-demowebcrawler"

resource "aws_sqs_queue" "pdfURLqueue" {

name = "pdfURLqueue_v1"
tags = {
Application=""iw-bd-demowebcrawler"

}
visibility_timeout_seconds = 150
message_retention_seconds = 345600

max_message_size = 262144
delay_seconds =0
receive_wait_time_seconds =0
redrive_policy = <<POLICY

{
"deadLetterTargetArn": "${aws_sqs_queue.pdfURLqueue-deadletter.arn}",

"maxReceiveCount": 200

;
POLICY

resource "aws_sqs_queue" "pdfURLqueue-deadletter" {

name = "pdfURLqueue_deadletter"
max_message_size = 262144 #256kb
message_retention_seconds = 1209600 #74 days

visibility_timeout_seconds = 300

receive_wait_time_seconds = 20
tags = {
Application=""iw-bd-demowebcrawler"

}

76

OCoONOOTULLDE WN PR

A D PP PEDWWWWWWWWWWNDNNDNNDNNNNNRPRRPRRPRRRRRPR
b WNREFRPOOONOUPWNRERPROOONOOCUPRARWNREROOOONOUPD,WNEREO

Appendix H

Appendix H
.gitlab-ci.yml

variables:
AWS ACCESS _KEY ID: "sxooxxoxxx"
AWS_SECRET_ACCESS KEY: "xxxxx"

image:
name: hashicorp/terraform:latest
entrypoint:
- '/ust/bin/env'
- '"PATH=/usr/local/sbin:/usr/local/bin: /ust/sbin: /ust/bin: /sbin: /bin’

before_script:
- rm -rf .terraform
- terraform --version
- mkdir -p ./creds
- echo $SERVICEACCOUNT | base64 -d > ./creds/setviceaccount.json
- terraform init

stages:
- validate
- plan

- apply

validate:
stage: validate
script:
- echo "Validate"
- terraform validate
plan:
stage: plan
script:
- echo "Planing"
- terraform plan -out "planfile
dependencies:
- validate
artifacts:
paths:
- planfile

n

apply:
stage: apply
script:
- echo "Applying"
- terraform apply -input=false "planfile"
dependencies:
- plan

77

OCoONOOTULLDE WN PR

PP, DDA, PP WWWWWWWWWWNDNNNNNNNNNRPRRPRRPRRRRRPR
O, WNRERPOOONOUPMWNREPRPOOUONOOTUPAWNREROOOONOUPE,WNEO

Appendix H

Appendix I:

.gitlab-ci.yml

variables:
AWS_DEFAULT_REGION: eu-central-1 # T)e region of onr §3 bucket
BUCKET_NAME: iw-bd-demowebcrawler-lambda # Your bucket name
FUNCTION_NAME: hyperlinkCollector
AWS ACCESS_KEY ID: "soooooox
AWS _SECRET ACCESS _KEY: "sooooooexx !

image:
name: hoanguyen95/terraform_python:latest # Using custons image with terraform, and
python installed on Ubuntu 16.04
entrypoint:
-'"/usr/bin/env’
- '"PATH=/ust/local/sbin:/ust/local/bin: /ust/sbin: /ust/bin:/sbin:/bin"

stages:
- build
- package
- deploy

build:

stage: build
script:

- echo "Building"

- pip3 install -r requirements.txt -t stc/
artifacts:

paths:

- src/

package:
stage: package
script:
- cd src
- zIp -r src.zip *
- echo "current dit"
-ls
artifacts:
paths:
- src/

deploy:
only:
variables:
- $CI_COMMIT_MESSAGE =~ /\[commits3\]/
stage: deploy
before_script:
- pip3 install awscli

78

47
48
49
50
51
52
53
54
55
56

Appendix H

script:
- aws s3 cp ./stc/stc.zip
s3://${BUCKET_NAME}/${FUNCTION_NAME}/$ {FUNCTION_NAME}.zip
redeploy AW'S Infrastructure
- "curl --request POST --form token="xxxxxx’ --form ref=master
https://gitlab.com/api/v4/projects /12983597 / trigger / pipeline"
environment:
dependencies:
- package

79

Appendix H

Appendix K : AWS CloudWatch Dashboard for AWS Lambda Functions

iw-bigdata-demowebcra... = Add widget Actions v 2019-06-22 (00:00:00) - 2019-06-27 (23:59:59) -

Lambda Function: Hyperlink Processor

HyperlinkProcessor-Invocations HyperlinkProcessor-Error count and success rate ...
74Tk 461 - . o . . . 100
374k J 231 50
o YN IV - : o B N N E— . -0
06/22 06/23 06/24 06/25 06/26 06/27 06/28 06/22 06/23 06/24 06/25 06/26 06/27 06/28
HyperlinkProcessor-Duration
Milliseconds
134k
66.9k
o j L My A H i 2 H .
06/22 06/22 06/23 06/23 06/24 08/24 06/25 08/25 06/26 06/26 06/27 06/27 06/28
@ Duration Minimum @ Duration Average @ Duration Maximum
iw-bigdata-demowebcra... v | Add widget Actions ~ Save dashbo: 2019-06-22 (00:00:00) - 2019-06-27 (23:59:59) ~
Lambda Function: Hyperlink Collector i
#
Hyperlink Collector - Invocations Hyperlink Collector - Error count and success rate...
537 392 100
269 M_P p 199 n:bh . 50
06/22 06/23 06/24 06/25 06/26 06/27 06/28 06/22 06/23 06/24 06/25 06/26 06/27 06/28
Hyperlink Collector - Duration
Milliseconds
580k \/\[—\/
290k v\/_.\
7~ MJ \/ 1 \/
| |
0 | ass | - . . | . .
06/22 06/22 06/23 06/23 06/24 08/24 06/25 06/25 06/26 06/26 06/27 06/27 086128
® Duration Minimum @ Duration Average @ Duration Maximum
iw-bigdata-demowebcra... v | Add widget Actions ~ Save dashbo: 2019-06-22 (00:00:00) - 2019-06-27 (23:59:59) - | &

Lambda Function Put Seed In Queue

PutSeedinQueue-Invocation PutSeedinQueue-Duration PutSeedInQueueError count and success rate (%)
Count Milliseconds Count No unit
5 883k 1 . |.. PR F « 100
3 .- 4.1k 0.5 50
0 0 0 —atee—ee -0
06/23 06/25 06/27 06/22 06/23 06/24 06/25 06/26 06/27 06/28 06/22 06/23 06/24 06/25 06/26 06/27 06/28
@ Invocations @ Duration Minimum @ Duration Average @ Duration Maximum @ Errors

® Success rate (%)

80

Appendix H

iw-bigdata-demowebcra... v Add widget Actions ~ Save dashboal 2019-06-22 (00:00:00) - 2019-06-27 (23:59:59) -

06/23 06/25 06/27 06/22 06/23 06/24 06/25 06/26 06/27 06/28 06/22 06/23 06/24 06/25 06/26 06/27 06/28

@ Invocations @ Duration Minimum @ Duration Average @ Duration Maximum @®Erors @ Success rate (%

Lambda Function: WebsiteWatcher

Website Watcher- Invocations Website Watcher-Error count and success rate (%)
727 603 RS i . . 100
364 302 V 50

, Y R . . , [N o
06/22 06/23 06/24 06/25 08/26 06/27 06/28 06/22 06/23 08/24 06/25 06/26 08/27 06/28

Website Watcher-Duration
Milliseconds

188k

oy
e

0 | A= = N : : S " n

06/22 06/22 06/23 06/23 06/24 06/24 06/25 06/25 06/26 06/26 06/27 08/27 06/28

]

@ Duration Minimum @ Duration Average @ Duration Maximum

81

